
Artificial Neural Networks 

Introduction 

 

The concept of Artificial Neural Networks is to have an algorithm that simulates the 

behaviour of actual mammalian neurons. That makes the study of these algorithms of particular 

interest in the field of neuroscience. There are many different variations of neural networks, each 

with its own advantages and disadvantages.  

Artificial neural networks have been used for aiding systems to learn. One classic 

example is image recognition. Artificial neural networks can be utilized to train an algorithm to 

recognise images. The network is composed of nodes often called artificial neurons, thus 

mimicking the structure of a biological brain. Each connection can transmit a signal from one 

node to another node, typically this signal is a real number. The output of each node/artificial 

neuron is computer using a non-linear function of the sum of the inputs. 

Concepts 

Artificial neural networks (ANN) are designed to simulate the behavior of actual, 

biological networks. There are some concepts that form the foundations of ANN’s. One of the 

most fundamental is Hebb’s rule. Hebb’s rule states that the changes in the strength of synaptic 

connections are proportional to the correlation in the firing of the two connecting neurons. 

Therefore, if two neurons regularly fire simultaneously, then the connection between them will 

be strengthened. Hebb’s rule also indicates that the opposite is also true: if two neurons rarely 

fire simultaneously, the connection between them will weaken. This has been put more 

colloquially as “neurons that fire together wire together”. This is true for ANN’s as well. As two 



nodes in an artificial neural network fire together more often, the link between them becomes 

stronger.  

 Artificial neural networks consist of nodes that are connected to each other to form a 

network. The connections between the nodes can be directed and have weights. In ANN’s the 

learning process involves the network itself changing parameters due to feedback from previous 

iterations. This is typically accomplished by adjusting the weightings between nodes. By 

changing the weightings between nodes, the likelihood of specific nodes firing in subsequent 

iterations is altered. 

The nodes are organized into layers, the various layers work to process data. Those 

connections may flow in only one direction, or in both directions. The level of connectivity 

within an ANN also varies with different types of ANN. The variation of ANN’s is substantial. 

ANN Terminology 

As you delve deeper into artificial neural networks, there is important terminology you 

should know. A basic glossary is provided here. Additional terminology will be introduced as 

needed in this tutorial. 

Activation Function This function determines if the inputs to a node reach the threshold to 

cause the node to fire to the node in the next layer. We will examine some specific activation 

functions later in this section. 

Accuracy is a measure the performance of classification, classification with missing inputs, and 

transcription, accuracy is the proportion of examples for which the model produces the correct 

output. Accuracy is affected by weights and biases. 



Cross Entropy is a metric for estimating how well a model would generalize to new data by 

testing the model against one or more non-overlapping data subsets withheld from the training 

set. 

Cross Validation is repeated use of the same data, but split differently (i.e., different training 

and testing sets). 

Dimensionality Reduction Dimension reduction summarizes a dataset using its common 

occurring patterns. Dimension reduction finds patterns in data, and uses these patterns to re-

express it in a compressed form. This makes subsequent computation with the data much more 

efficient. 

Error E, a function that computes the inaccuracies of the network as a function of the outputs y 

and targets t. 

Error Rate is a performance metric of the classification of classification, classification with 

missing inputs, and transcription, the proportion of examples for which the model produces an 

incorrect output. 

Feature measurable property of an object or event with respect to a set of characteristics. 

Inputs An input vector is the data given as one input to the algorithm. This will usually be a 

vector. Written as x, with elements xi, where i runs from 0 to the number of input dimensions, n.  

One-Hot this is a group of bits with a high bit 1 and a low bit 0. One hot encoding is used to 

indicate state in some systems. 

Outputs The output vector is y, with elements yj, where j runs from 1 to the number of output 

dimensions, n. We can write y(x,W) to remind ourselves that the output depends on the inputs to 

the algorithm and the current set of weights of the network.  



Overfitting occurs when comparing the complexity of hypothesis class H with the complexity of 

the function underlying the data, H is too complex, and the data is not enough to constrain it. 

Precision To measure the performance of classification, precision is the fraction of detections 

reported by the model that were correct. 

Stochastic Gradient Descent Also known as incremental gradient descent, it allows one to 

approximate the gradient with a single data point instead of all available data. At each step of the 

gradient descent, a randomly chosen data point is used to compute the gradient direction. 

Targets The target vector t, with elements tj, where j runs from 1 to the number of output 

dimensions, n, are the extra data that we need for supervised learning, since they provide the 

‘correct’ answers that the algorithm is learning about. 

Tensors are primary data structure in TensorFlow programs. Tensors are N-dimensional data 

structures, most commonly scalars, vectors, or matrices. The elements of a Tensor can hold 

integer, floating-point, or string values. 

Training Set Data is typically divided into a training set and a testing set.  

Underfitting occurs when comparing the complexity of hypothesis class H with the complexity 

of the function underlying the data, H is less complex than the function. 

Weights wij, are the weighted connections between nodes i and j. For neural networks these 

weights are analogous to the synapses in the brain.  

 

Activation Functions 

Activation functions, mentioned, earlier in this tutorial, are key to the function of 

artificial neural networks. An activation function takes the input and determines if the input to 

the current neuron is sufficient to cause that neuron to fire the next neuron. Activation functions 



define the learning pattern and determine the efficiency of the algorithm. This section describes 

some commonly used activation functions.  

Google describes activation functions as “A function (for example, ReLU or sigmoid) 

that takes in the weighted sum of all of the inputs from the previous layer and then generates and 

passes an output value (typically nonlinear) to the next layer.”1 

Rectified Linear Unit (or ReLU) is commonly used in Tensorflow. This function will take 

the input, and if it is positive will simply output that input, with no changes. If it is not positive, 

then the ReLU activation function will output 0. The ReLU function is defined by the formula in 

equation 10.1. 

{
0 ⅈ𝑓𝑥 ≤ 0
𝑥 ⅈ𝑓𝑥 > 0

                 (eq. 10.1) 

ReLU is widely used but suffers from something called the dying ReLU problem. 

Essentially, during the training phase, some nodes/neurons cease functioning or outputting 

anything other than 0. Essentially, these nodes die. There are cases wherein as much as half the 

nodes die. One answer to that is the Leaky ReLU. This activation function is essentially a ReLU 

that has a parameter that determines how much the function leaks. That leakage prevents the 

death of nodes.  

There are other variations of the ReLU function. One often used with Tensorflow is the 

ReLU6. This activation function has been shown to be faster than traditional ReLU. The ReLU6 

function is defined by the formula in equation 10.2. 

f(x) = min (max(0,x),6)                                                                                         (eq. 10.2) 

 

1 https://developers.google.com/machine-learning/glossary 



The Sigmoid function is also frequently seen in Tensorflow. This takes the input and 

compresses it into a range between 0 and 1. A result of 0 would mean the current node does not 

fire, whereas a 1 would mean it is fully firing. The Sigmoid activation function suppresses 

gradients. This is sometimes called the logistic function and is defined by the formula in equation 

10.3. 

0 − (𝑥) =
1

1+ⅇ𝑥                                                                                             (eq. 10.3) 

The sigmoid function was first published in the 1990’s. The fact that it  suppresses 

gradients was a substantial advance in activation functions. 

The Hyperbolic Tangent (Tanh) activation function is similar to Sigmoid, except that it 

compresses the input to a range between -1 and +1. This activation function is defined by the 

formula in equation 10.4. 

𝑡𝑎𝑛ℎ(𝑥) =
ⅇ𝑥−ⅇ−𝑥

ⅇ𝑥+ⅇ−𝑥                                                                                            (eq. 10.5) 

 Unlike the sigmoid function, the tanh function is zero centered. However, like the 

sigmoid function, it is computationally expensive due to the exponential operations in the 

function.  

Optimization Algorithms 

Optimization algorithms are used to adjust parameters in order to minimize the cost 

(computational cost) of the function. For each of these algorithms, this section will present a 

general description. The details of these algorithms are not necessary because Tensorflow 

handles the mathematical implementation of the algorithm for you. This is not an exhaustive list 

of all optimization algorithms available in Tensorflow. This description of these key algorithms 



should help you understand optimization as a concept. You can view all current Tensorflow 

optimization algorithms at the Tensorflow website2. 

Gradient descent is an optimization algorithm used to minimize a given function by 

iteratively moving in the direction of steepest descent as defined by the negative of the gradient. 

In machine learning, gradient descents are useful to update the parameters of the model being 

used. Parameters refer to coefficients in linear regression and weights in neural networks. Put in 

more rigorous mathematical terms, the gradient descent algorithm is used to find the minimum of 

a function. Put more simply, gradient descent is an optimization algorithm used to find the values 

of parameters of a function that minimizes a cost function (computational cost). When using 

Tensorflow, the class SGD is the gradient descent optimizer. It should be noted that gradient 

descent is perhaps the most common optimization algorithm used. 

Another optimizer is Adaptive Moment Estimation (ADAM). This is a variation of 

gradient descent. In fact, ADAM combines two different gradient descent approaches: Root 

Mean Square Propagation and Adaptive Gradients. Rather than use the entire data set to calculate 

the gradient, Adaptive Moment Estimation (ADAM) uses a randomly selected subset of the data. 

This creates a stochastic approximation of the gradient descent. ADAM is also a widely used 

optimization algorithm. 

NADAM is a variation of ADAM that uses a Nesterov Momentum. This, of course, 

necessitates a discussion of what a Nesterov momentum is. Any gradient descent can be 

modified with momentum. In this context, momentum is some adjustment to the gradient descent 

parameter so that movement through the parameter space is averaged over multiple steps. 

 

2 https://www.tensorflow.org/api_docs/python/tf/keras/optimizers 



Normally this is done by introducing velocity. The goal is that momentum will increase in those 

directions that lead to the most improvement. Nesterov momentum is a variation of that concept 

of momentum. Rather than calculate momentum with the actual positions in the search space, it 

calculates based on projected positions in the search space. 

Adaptive Gradient (AdaGrad) is actually a group of closely related algorithms. As the 

name suggests, is a variation of gradient descent. A limitation of gradient descent is that it uses 

the same step size (learning rate) for each input variable, thus AdaGrad seeks to overcome that 

limitation. AdaGrad allows step size in each dimension used by the optimization algorithm to be 

automatically adapted based on the gradients observed for the variable.  

Models 

Models are basically files that are trained to recognize patterns. The model is trained 

using a set of training data. After training, the model can be used to make predictions from the 

data. NVIDIA, a graphics card and processor manufacturer, describes models in the following 

manner: “A machine learning model is an expression of an algorithm that combs through 

mountains of data to find patterns or make predictions. Fueled by data, machine learning (ML) 

models are the mathematical engines of artificial intelligence.”3 Tensorflow has an online 

repository of models that have already been trained for various purposes4. 

Feed Forward Neural Networks 

The name of these networks derives from the fact that outputs from nodes in one layer 

can only go to nodes in the next layer. There is no possibility for a cycle or loopback. The 

information ‘feeds forward’, thus the name. This is among the simplest forms of a neural 

 

3 https://blogs.nvidia.com/blog/2021/08/16/what-is-a-machine-learning-model/ 
4 https://tfhub.dev/ 



network. In fact, many of the concepts in the Feed Forward Network are found in all neural 

networks. Thus, this particular variation bears close study. 

The simplest type of feed forward network is the single layer perceptron. The concept of 

a perceptron predates not only machine learning, but even digital computers. Warren McCulloch 

and Walter Pitts published an interesting paper in 1943 intitled “A Logical Calculus of Ideas 

Immanent in Nervous Activity”5. Their goal was to simply model how neurons work. This 

modeling led, eventually, to the creation of artificial neurons. Each neuron takes in input, sums 

the input, and based on that summation, determines if it will fire or not. The model is shown in 

figure 10.1 

 

 

Figure 10.1 McCulloh-Pitts Neuron 

Preceding nodes (X1 through Xn) send input to the node in question. Each of these has a 

specific weight associated with it (W1 through Wn). That node sums the input (thus the 

summation symbol) and if the sum of the weighted input meets or exceeds a specific threshold, 

then the node in question will fire and send a signal to the next node, the target node (thus the T 

representing it). The McCulloh Pitts neuron leads us to what is usually called Heb’s rule. Hebb’s 

 

5 https://link.springer.com/content/pdf/10.1007/BF02478259.pdf 



rule was discussed previously, but as a reminder, consider this quote from another machine 

learning textbook “Hebb’s rule says that the changes in the strength of synaptic connections are 

proportional to the correlation in the firing of the two connecting neurons. So, if two neurons 

consistently fire simultaneously, then any connection between them will change in strength, 

becoming stronger. However, if the two neurons never fire simultaneously, the connection 

between them will die away. The idea is that if two neurons both respond to something, then they 

should be connected.”6  

Perceptron 

The perceptron is the most basic implementation of a neural network. It is the 

implementation of a McCulloch-Pitts neuron. Figure 10.2 shows code for a very simple 

perceptron in Python. 

 

Figure 10.2 Perceptron 

 

6 Machine Learning: An Algorithmic Perspective, Second Edition (Chapman & Hall/Crc Machine Learning & 

Pattern Recognition) 



 

Just 23 lines of code, including blank spaces. The only problem is when you execute this 

code it does not print anything out. That is because we did not add any code to print out. We will 

add that later. For now, notice the three functions in the class Perceptron. We have an 

initialization function (_init_) that is meant to set initial values. Then we have two functions, one 

to train and the other to predict. This is a rather simple example, let us look at a more complex 

example. 

The following code uses the mnist dataset. That is the Modified National Institute of 

Standards and Technology handwriting dataset. This database consists of handwritten numerals. 

It is often used in machine learning classes to illustrate how to train an algorithm to recognize 

digits. This dataset has 60,000 training images and 10,000 test images. The data was normalized 

to fit into 28X28 pixel boundaries. 

import tensorflow as tf 

import tensorflow_datasets as tfds 

 

#the mnist dataset is loaded into two sections 

# a test and a training section 

(data_train, data_test), ds_info = tfds.load( 

    'mnist', 

    split=['train', 'test'], 

    shuffle_files=True, 

    as_supervised=True, 

    with_info=True, 

) 

 

def normalize_image(image, label): 

  """Normalizes images: `uint8` -> `float32`.""" 

  return tf.cast(image, tf.float32) / 255., label 

 

data_train = data_train.map( 

    normalize_image, num_parallel_calls=tf.data.AUTOTUNE) 

data_train = data_train.cache() 

data_train = data_train.shuffle(ds_info.splits['train'].num_examples) 

data_train = data_train.batch(128) 



data_train = data_train.prefetch(tf.data.AUTOTUNE) 

 

 

data_test = data_test.map( 

    normalize_image, num_parallel_calls=tf.data.AUTOTUNE) 

data_test = data_test.batch(128) 

data_test = data_test.cache() 

data_test = data_test.prefetch(tf.data.AUTOTUNE) 

 

model = tf.keras.models.Sequential([ 

  tf.keras.layers.Flatten(input_shape=(28, 28)), 

  tf.keras.layers.Dense(128, activation='relu'), 

  tf.keras.layers.Dense(10) 

]) 

model.compile( 

    optimizer=tf.keras.optimizers.Adam(0.001), 

    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), 

    metrics=[tf.keras.metrics.SparseCategoricalAccuracy()], 

) 

 

model.fit( 

    data_train, 

    epochs=6, 

    validation_data=data_test, 

) 

 

When you execute this script a few things will happen. First, the system may give you 

errors related to whether or not you have a GPU. If you don’t the algorithm will still run, just not 

as efficiently. Then the dataset will be loaded. These initial steps are shown in figure 10.3: 

 

Figure 10.3 First neural network 



Next the process will continue through 6 epochs. Notice in the code we set it for 6 

epochs. You can experiment with changing that. The output is shown in figure 10.4. 

 

Figure 10.4 First neural network output 

This is a more robust example of a neural network. You should pause to get comfortable 

with the code, and executing the script, before you continue further in this tutoral. 

Backpropagation 

This is an algorithm used in training artificial neural networks, particularly with 

feedforward artificial neural networks. Backpropagation is used to compute the gradient of the 

loss function with respect to the weights. The loss function is also sometimes called a cost or 

error function. It is a function that is used to represent some cost associated with some activity or 

event. 

The backpropagation algorithm is used to train a neural network using a technique called 

chain rule. After each forward pass through a network, backpropagation performs a backward 

pass while adjusting the model’s parameters. Normally the parameters adjusted are the weights 

and biases. 

This algorithm was first introduced in the 1970’s but achieved wide recognition due to a 

1986 paper in the journal Nature written by David Rumelhart, Geoffrey Hitton, and Ronald 

Williams. It is useful to consider how these authors described backpropagation: 

 



“The procedure repeatedly adjusts the weights of the connections in the network so as to 

minimize a measure of the difference between the actual output vector of the net and the 

desired output vector. As a result of the weight adjustments, internal ‘hidden’ units which 

are not part of the input or output come to represent important features of the task 

domain, and the regularities in the task are captured by the interactions of these units. The 

ability to create useful new features distinguishes back-propagation from earlier, simpler 

methods such as the perceptron-convergence procedure”7 

Another description from the International Dictionary of Artificial Intelligence8 could be 

useful in aiding your understanding of backpropagation: 

“A classical method for error propagation when training Artificial Neural Networks 

(ANNs). For standard backpropagation, the parameters of each node are changed according to 

the local error gradient. The method can be very slow to converge although it can be improved 

through the use of methods that slow the error propagation and by batch processing. Many 

alternate methods such as the conjugate gradient and Levenberg-Marquardt algorithms are more 

effective and reliable.” 

Fortunately, the backpropagation algorithm is taken care of by libraries such as 

TensorFlow. You don’t have to implement the details yourself. I say this is fortunate, because 

this algorithm uses partial derivatives which may be beyond some readers mathematical skillset. 

Normalization 

 

7 https://www.nature.com/articles/323533a0 

8 https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.8194&rep=rep1&type=pdf 



Normalization is a data preparation technique that entails altering the values of numeric 

values in a dataset to a common scale. This is often needed when the values of the dataset have 

different ranges. There are three different types of normalization used in machine learning: 

Input normalization: Normalizing input is quite common. A common example is scaling the 

pixel values of images (0–255) to values between zero and one. 

Batch normalization: This is a normalization that occurs between each layer of the network so 

that values mean is zero and their standard deviation is one. 

Internal normalization: This normalization is about ensuring that each layer keeps the previous 

layer's mean and variance. 

 Many neural network code samples you will see implement normalization at some point. 

Almost all machine learning scripts dealing with image data will at least implement input 

normalization.  

Specific Variations of Neural Networks 

Artificial Neural Networks are widely used, perhaps the most widely used machine 

learning algorithms. Due to that fact, it should come as no surprise that there are numerous 

variations of these algorithms. Each has some advantage for some specific application. This 

section will briefly describe major variations. 

Recurrent Neural Networks 

The recurrent neural network (RNN) is a common variation of neural networks. These are 

derived from feedforward neural networks. Recurrent nets are a variation of artificial neural 

network intended to distinguish patterns in sequences of data. The patterns can be almost 

anything, but the pattern recognition makes RNN’s idea for identifying handwriting, numbers, 



time series data from sensors, stock market data, and more. RNN’s consider time and sequence. 

This gives these algorithms a temporal dimension.  

The manner in which RNNs function is to have cycles that permit output from some 

nodes to affect subsequent input into the same nodes. There are several types of RNN’s 

including: 

• Encoder decoder or sequence to sequence RNNs, 

• Bidirectional RNNs, 

• Recursive RNNs, 

• Gated Recurrent Unit (GRU), 

• LSTM RNNs. 

The following description of RNN’s may help clarify this class of algorithms for you “A 

family of neural networks for processing sequential data. RNNs share the same weights across 

different discrete time steps: each member of the output is a function of the previous members of 

the output; each member of the output is produced using the same update rule applied to the 

previous outputs. This recurrent formulation results in the sharing of parameters through a very 

deep computational graph. RNNs are very powerful dynamic systems for tasks that involve 

sequential inputs, such as speech and language.”9 

Convolutional Neural Networks 

A convolutional neural network (CNN) is a neural network with some convolutional 

layers  (and some other layers). A convolutional layer has a number of filters that do 

convolutional operations. The concept is shown in figure 10.5. 

 

9 Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron. Deep Learning (p. 373). MIT Press. 

LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey. Deep Learning. Nature 521, 436-444 (2015) 



 

Figure 10.5 Convolutional Neural Network 

The different layers perform different aspects of the learning. Convolutional Neural 

Networks (sometimes called ConvNets) are often used with visual imagery. This makes them an 

ideal candidate for examining diagnostic imagery. Put more formally, convolutional neural 

networks use a mathematical operation called convolution rather than basic matrix multiplication 

in at least one of the layers. The architecture of a convolutional neural network will include an 

input layer, one or more hidden layers, and an output layer. The input is provided as a tensor 

with a shape. The convolutional neural layer transforms that image to a feature map with a shape. 

Some sources refer to the feature map as an activation map. The convolutional layers each 

respond to input only for their own receptive field. This is quite similar to how the brain 

processes visual imagery. 

The following code should help elucidate the convolutional neural network. You may 

also wish to compare this to the previous code examples, noting similarities and differences. 

#! /usr/bin/env python 

# This is a basic convolutional neural network example.  

 

from __future__ import absolute_import, division, print_function, unicode_literals 



 

import tensorflow as tf 

 

#tensorflow includes a 2D convolutional network you just 

#have to include it. 

from tensorflow.keras.layers import Dense, Flatten, Conv2D 

from tensorflow.keras import Model 

 

# Load and prepare the MNIST dataset. This dataset is incorporated with tensorflow 

# the data is split into a training set and a test set 

mnist = tf.keras.datasets.mnist 

(x_train, y_train), (x_test, y_test) = mnist.load_data() 

x_train, x_test = x_train / 255.0, x_test / 255.0 

 

# # Add a channels dimension 

x_train = x_train[..., tf.newaxis] 

x_test  = x_test[..., tf.newaxis] 

 

# Use tf.data to batch and shuffle the dataset 

train_ds = tf.data.Dataset.from_tensor_slices( 

        (x_train, y_train)).shuffle(10000).batch(32) 

test_ds = tf.data.Dataset.from_tensor_slices( 

        (x_test, y_test)).batch(32) 

 

# Build the tf.keras model using the Keras model the layers will use 

# different activation functions 

class MyModel(Model): 

  def __init__(self): 

      super(MyModel, self).__init__() 

      self.conv1 = Conv2D(32, 3, activation='relu') 

      self.flatten = Flatten() 

      self.d1 = Dense(128, activation='relu') 

      self.d2 = Dense(10, activation='softmax') 

 

  def call(self, x): 

      x = self.conv1(x) 

      x = self.flatten(x) 

      x = self.d1(x) 

      return self.d2(x) 

 

# Create an instance of the model 

model = MyModel() 

 

# Choose an optimizer and loss function for training 

# there are several other optimizers you can expiriment with 



# SGD,RMSprop, Adam,  Adamax, etc. To see a complet list go to 

# https://www.tensorflow.org/api_docs/python/tf/keras/optimizers 

loss_object = tf.keras.losses.SparseCategoricalCrossentropy() 

optimizer = tf.keras.optimizers.Adam() 

 

# Select metrics to measure the loss and the accuracy of the model 

# a complete list of metrix can be found here 

https://www.tensorflow.org/api_docs/python/tf/keras/metrics 

train_loss = tf.keras.metrics.Mean(name='train_loss') 

train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') 

 

test_loss = tf.keras.metrics.Mean(name='test_loss') 

test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') 

 

# Use tf.GradientTape to train the model. 

@tf.function 

def train_step(images, labels): 

    with tf.GradientTape() as tape: 

        predictions = model(images) 

        loss = loss_object(labels, predictions) 

    gradients = tape.gradient(loss, model.trainable_variables) 

    optimizer.apply_gradients(zip(gradients, model.trainable_variables)) 

    train_loss(loss) 

    train_accuracy(labels, predictions) 

 

@tf.function 

def test_step(images, labels): 

    predictions = model(images) 

    t_loss = loss_object(labels, predictions) 

    test_loss(t_loss) 

    test_accuracy(labels, predictions) 

 

# you may wish to change the number of epochs to see 

# what effect that has 

EPOCHS = 5 

 

for epoch in range(EPOCHS): 

    for images, labels in train_ds: 

        train_step(images, labels) 

 

    for test_images, test_labels in test_ds: 

        test_step(test_images, test_labels) 

 

    template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}' 

    print(template.format(epoch+1, 

                          train_loss.result(), 



                          train_accuracy.result()*100, 

                          test_loss.result(), 

                          test_accuracy.result()*100)) 

    # Reset  metrics for the next epoch 

    train_loss.reset_states() 

    train_accuracy.reset_states() 

    test_loss.reset_states() 

    test_accuracy.reset_states() 

 

Much of the preceding code should be familiar to you after the previous code samples. A 

few elements may require some further explanation. One such item is 

SparseCategoricalCrossentropy. This is a property of Keras that is used when there are two or 

more label classes, in order to compute the crossentropy loss between the labels and predictions. 

When you execute this script you may first get familiar GPU error messages if your computer 

does not have a suitable GPU. Then you will see the epochs each with an accuracy shown. This 

is shown in figure 10.6. 

 

Figure 10.7 CNN Output 

Note that the test accuracy improved to a point, then began to level off and even decrease 

slightly. This is an important fact to keep in mind. The issue is not simply to do as many epochs 

as you possibly can. There is a point were this will simply generate diminishing returns. 

However, experimenting with different activation and optimization functions can be quite useful. 

Given how common convolutional neural networks are, we will review a second code 

sample. This one is used to detect pituitary brain tumors based on  imaging. The code is more 

detailed and should aid you in understanding CNN’s. The data can be found on Github at 

https://github.com/sartajbhuvaji/brain-tumor-classification-dataset  

https://github.com/sartajbhuvaji/brain-tumor-classification-dataset


import numpy as np  

import pandas as pd # used for reading CSV data files 

 

import os #needed for navigating file system 

 

#The path is based on having downloaded the data to a 

#subfolder of the directory this script is in and the 

#folder was named 'braintumordataset' 

for dirname, _, filenames in os.walk('/BrainTumorDataSet'): 

    for filename in filenames: 

        print(os.path.join(dirname, filename)) 

 

#keras is used for our CNN 

import keras 

from keras.models import Sequential 

from keras.layers import Conv2D,Flatten,Dense,MaxPooling2D,Dropout 

from sklearn.metrics import accuracy_score 

 

 

import io 

from PIL import Image 

import tqdm 

from sklearn.model_selection import train_test_split 

import cv2 

from sklearn.utils import shuffle 

import tensorflow as tf 

 

import matplotlib.pyplot as plt 

 

xtrainarray = [] 

ytrainarray = [] 

imgsize = 150 

labels = ['glioma_tumor','meningioma_tumor','no_tumor','pituitary_tumor'] 

for i in labels: 

    folderPath = os.path.join('BrainTumorDataSet/Training/',i) 

    for j in os.listdir(folderPath): 

        img = cv2.imread(os.path.join(folderPath,j)) 

        img = cv2.resize(img,(imgsize,imgsize)) 

        xtrainarray.append(img) 

        ytrainarray.append(i) 

         

for i in labels: 

    folderPath = os.path.join('BrainTumorDataSet/Testing/',i) 

    for j in os.listdir(folderPath): 

        img = cv2.imread(os.path.join(folderPath,j)) 

        img = cv2.resize(img,(imgsize,imgsize)) 



        xtrainarray.append(img) 

        ytrainarray.append(i) 

 

xtrainarray = np.array(xtrainarray) 

ytrainarray = np.array(ytrainarray) 

 

xtrainarray,ytrainarray = shuffle(xtrainarray,ytrainarray,random_state=101) 

xtrainarray.shape 

 

xtrainarray,X_test,ytrainarray,y_test = 

train_test_split(xtrainarray,ytrainarray,test_size=0.1,random_state=101) 

 

ytrainarray_new = [] 

for i in ytrainarray: 

    ytrainarray_new.append(labels.index(i)) 

ytrainarray=ytrainarray_new 

ytrainarray = tf.keras.utils.to_categorical(ytrainarray) 

 

y_test_new = [] 

for i in y_test: 

    y_test_new.append(labels.index(i)) 

y_test=y_test_new 

y_test = tf.keras.utils.to_categorical(y_test) 

 

# you should expiriment with different activation functions 

# Tanh, relu, relu6, gelu, etc. 

model = Sequential() 

model.add(Conv2D(32,(3,3),activation = ‘relu6’,input_shape=(150,150,3))) 

model.add(Conv2D(64,(3,3),activation= ‘relu6’)) 

model.add(MaxPooling2D(2,2)) 

model.add(Dropout(0.3)) 

model.add(Conv2D(64,(3,3),activation=‘relu6’)) 

model.add(Conv2D(64,(3,3),activation=‘relu6’)) 

model.add(Dropout(0.3)) 

model.add(MaxPooling2D(2,2)) 

model.add(Dropout(0.3)) 

model.add(Conv2D(128,(3,3),activation=‘relu6’)) 

model.add(Conv2D(128,(3,3),activation=‘relu6’)) 

model.add(Conv2D(128,(3,3),activation=‘relu6’)) 

model.add(MaxPooling2D(2,2)) 

model.add(Dropout(0.3)) 

model.add(Conv2D(128,(3,3),activation='relu')) 

model.add(Conv2D(256,(3,3),activation='relu')) 

model.add(MaxPooling2D(2,2)) 

model.add(Dropout(0.3)) 

model.add(Flatten()) 



model.add(Dense(512,activation = 'relu')) 

model.add(Dense(512,activation = 'relu')) 

model.add(Dropout(0.3)) 

model.add(Dense(4,activation='softmax')) 

 

model.summary() 

 

 

model.compile(loss='categorical_crossentropy',optimizer='Adam',metrics=['accuracy']) 

#5 epochs is just so this will run quickly. In real applications you will often 

# use more. 

history = model.fit(xtrainarray,ytrainarray,epochs=5,validation_split=0.1) 

 

acc = history.history['accuracy'] 

val_acc = history.history['val_accuracy'] 

epochs = range(len(acc)) 

fig = plt.figure(figsize=(14,7)) 

plt.plot(epochs,acc,'r',label="Training Accuracy") 

plt.plot(epochs,val_acc,'b',label="Validation Accuracy") 

plt.legend(loc='upper left') 

plt.show() 

 

 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

epochs = range(len(loss)) 

fig = plt.figure(figsize=(14,7)) 

plt.plot(epochs,loss,'r',label="Training loss") 

plt.plot(epochs,val_loss,'b',label="Validation loss") 

plt.legend(loc='upper left') 

plt.show() 

 

img = cv2.imread('/BrainTumorDataSet/Training/pituitary_tumor/p (107).jpg') 

img = cv2.resize(img,(150,150)) 

img_array = np.array(img) 

img_array.shape 

 

img_array = img_array.reshape(1,150,150,3) 

img_array.shape 

 

 

from tensorflow.keras.preprocessing import image 

img = image.load_img('/BrainTumorDataSet/Training/pituitary_tumor/p (107).jpg') 

plt.imshow(img,interpolation='nearest') 

plt.show() 

 



a=model.predict(img_array) 

indices = a.argmax() 

indices 

 

Notice the line of code model.summary(), model.summary will display the choices you 

made in your model on the screen. You could omit this line and the script would still work. Or 

you may try including this line in other scripts where you build a keras.model. When you execute 

this script, several images will be displayed, these are shown in figures 10.7 through 10.10. 

 

Figure 10.7 CNN Model Summary 



 

Figure 10.8 CNN Epoch Results 

 

Figure 10.9 CNN Accuracy 

 

Figure 10.10 CNN Loss 

 

 



Autoencoder 

This is a variation of artificial neural network that is used to learn how to properly code 

unlabeled data. The algorithm validates its results by trying to regenerate the input data from the 

encoders. The encoding is simply a representation of the data. Autoencoders are often used for 

dimensionality reduction. An autoencoder has two main parts: an encoder that maps the message 

to a code, and a decoder that reconstructs the message from the code. An optimal autoencoder 

would perform as close to perfect reconstruction as possible. How close to perfection the 

autoencoder performs in actuality is determined by a quality function. 

As you can probably guess, there are numerous variations of autoencoders. There are 

sparse autoencoders (SAE), denoising autoencoders (DAE), and others. Sparse autoencoders 

intentionally introduce bottlenecks, but rather than do so via reducing the number of nodes, the 

SAE instead penalizes particular activations of nodes with a layer. Denoising autoencoders work 

by introducing a minor deviation into the input data, but maintaining the unmodified data as the 

target output. The model needs to learn to denoise (remove deviations) from the data. 

The following code is a basic autoencoder. This code again uses the MINST database 

because of its easy availability. 

 

from keras.layers import Dense,Conv2D,MaxPooling2D,UpSampling2D 

from keras import Input, Model 

from keras.datasets import mnist 

import numpy as nump 

import matplotlib.pyplot as plt 

 

#first build the model 

encoding_dimension = 15  

inumput_img = Input(shape=(784,)) 

# encoded representation of input 

encoded = Dense(encoding_dimension, activation='relu')(input_img) 

# decoded representation of code  



decoded = Dense(784, activation='sigmoid')(encoded) 

# Model which take input image and shows decoded images 

autoencoder = Model(input_img, decoded) 

 

# Now build the encoder and decoder 

encoder = Model(input_img, encoded) 

# Creating a decoder model 

encoded_input = Input(shape=(encoding_dimension,)) 

# last layer of the autoencoder model 

decoder_layer = autoencoder.layers[-1] 

# decoder model 

decoder = Model(encoded_input, decoder_layer(encoded_input)) 

 

#compile the model. Note the optimizer we are using 

#you can try this with a different optimizer. 

autoencoder.compile(optimizer='adam', loss='binary_crossentropy') 

#now we load the minst data 

(x_train, y_train), (x_test, y_test) = mnist.load_data() 

x_train = x_train.astype('float32') / 255. 

x_test = x_test.astype('float32') / 255. 

x_train = x_train.reshape((len(x_train), nump.prod(x_train.shape[1:]))) 

x_test = x_test.reshape((len(x_test), nump.prod(x_test.shape[1:]))) 

print(x_train.shape) 

print(x_test.shape) 

 

 

 

When executed, it will simply output the following: 

(60000, 784) 

(10000, 784) 

The following quote might help elucidate the autoencoder “The combination of an 

encoder function that converts the input data into a different representation, and a decoder 

function that converts the new representation back into the original format. Autoencoders are 

trained to preserve as much information as possible when an input is run through the encoder and 



then the decoder, but are also trained to make the new representation have various nice 

properties. Different kinds of autoencoders aim to achieve different kinds of properties.”10 

Spiking Neural Network 

Another variation of the artificial neural network is one that incorporates the concept of 

time. With a spiking neural network information is not transmitted at every propagation cycle. 

Rather information is only transmitted when a particular threshold is met. This mimics the 

manner in which biological neurons function. Spiking neural networks are based on the 

Hodgkin-Huxley model of biological networks. This model describes how action potentials are 

initiated and propagated to the next neuron. The development of this model earned Alan 

Hodgkin and Andrew Huxley the 1963 Nobel Prize in Physiology or Medicine. 

The concept is for the nodes in a given layer to not test for activation in every iteration of 

propagation. The nodes only test for activation only when their potentials reach a specific value. 

This is different than typical multi-layer perceptrons wherein neurons test for propagation every 

iteration. 

Deep Neural Networks 

 While the terminology may indicate that this is a substantial variation on the neural 

network concept, it is not. A deep neural network (DNN) simply has more hidden layers. This is 

shown in figure 10.11. 

 

 

10 Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron. Deep Learning (p. 8). MIT Press. 



 

Figure 10.11 Deep Neural Network 

 In figure 10.11 the connections in the hidden layers are not shown. This is because the 

hidden layers may have all nodes connected to all other nodes, or only some nodes connected to 

other nodes. A deep neural network can also be a feed forward network or a recurrent network. 

Each layer may even use a different activation function. Deciding how many layers and what 

activation functions should be used is not a straight forward process. It requires some level of 

experience, and a bit of experimentation to find the right combination for a given problem.  

Neuroscience Example Code 

The following is an example of Python code to recognize brain tumors from diagnostic 

imaging data. You will need to do a few things to make this code function. First, if you have not 

previously done so, you will need to install two items: 

pip install opencv-python 



pip install scikit-learn 

The first allows you to open comma delimited files. The second allows you to use the scikit learn 

package. Then you need to download the dataset. There are a number of datasets freely available 

on websites like Kaggle.com. This dataset comes from 

https://www.kaggle.com/datasets/preetviradiya/brian-tumor-dataset  

You will download it to the same folder you have your Python script in. The code is shown here: 

import cv2 

import os 

import tensorflow as tf 

from tensorflow.keras import models 

from tensorflow.keras import layers 

from tqdm import tqdm 

from sklearn.model_selection import train_test_split 

import numpy as np 

 

# there are two data groups in the set, health and tumor 

loc0 = 'Brain Tumor Data Set/Healthy' 

loc1 = 'Brain Tumor Data Set/Brain Tumor' 

 

# setup an array for your features 

features = [] 

 

#tqdm is used to create a progress bar, definitely makes your script more user friendly 

for img in tqdm(os.listdir(loc0)): 

    f = cv2.imread(os.path.join(loc0,img)) #read in healthy data 

    f = cv2.cvtColor(f,cv2.COLOR_BGR2GRAY) 

    f = cv2.resize(f,(70,70)) 

    features.append(f) 

 

for img in tqdm(os.listdir(loc1)): 

    f = cv2.imread(os.path.join(loc1,img)) # read in tumor data 

    f = cv2.cvtColor(f,cv2.COLOR_BGR2GRAY) 

    f = cv2.resize(f,(70,70)) 

    features.append(f) 

     

#now we have an array for the labels. 

labels = [] 

 

for img in tqdm(os.listdir(loc0)): 

    labels.append(0) 

https://www.kaggle.com/datasets/preetviradiya/brian-tumor-dataset


 

for img in tqdm(os.listdir(loc1)): 

    labels.append(1) 

 

 

X = np.array(features) 

X.shape 

 

Y = np.array(labels) 

Y.shape 

 

Xt = X.reshape(4600, 4900) 

Yt = Y.reshape(4600,1) 

 

 

xtrain,xtest,ytrain,ytest = train_test_split(Xt,Yt,train_size=0.75) 

 

 

ytrainC = tf.keras.utils.to_categorical(ytrain) 

ytestC = tf.keras.utils.to_categorical(ytest) 

 

# we are using sequential models with specific activation functions. Once you are comfortable 

# with this script you can experiment with different models and different activation functions 

model = models.Sequential() 

 

model.add(layers.Dense(300, activation='relu' , input_dim = xtrain.shape[1])) 

 

model.add(layers.Dense(200,activation='relu')) 

 

model.add(layers.Dense(200,activation='relu')) 

 

model.add(layers.Dense(100,activation='relu')) 

 

model.add(layers.Dense(2,activation='sigmoid')) 

 

 

xtrainN = xtrain/xtrain.max() 

xtestN = xtest/xtest.max() 

 

SGD = tf.keras.optimizers.SGD(0.1) 

model.compile(loss = 'categorical_crossentropy', 

              optimizer = SGD, 

              metrics=['Accuracy']) 

 

model.fit(xtrainN,ytrainC, epochs=15, validation_data=(xtestN,ytestC)) 



 

When you execute the code you should see something like what is shown in figure 10.11. 

 

Figure 10.12 Using Brain Tumor Imagery 

Note the progress bars as data is being read into the script. Then you see the epochs begin 

with each having a particular accuracy. 

 

Exercises 

 

Lab 1:  Basic TensorFlow 

#!/usr/bin/python 

# this is a basic tensor flow project 

import tensorflow as tf 

 

mnist = tf.keras.datasets.mnist 

 

# load the data set 

(x_train, y_train), (x_test, y_test) = mnist.load_data() 

x_train, x_test = x_train / 255.0, x_test / 255.0 

 

 

#Build the tensorflow tf.keras.Sequential model by stacking layers.  

 

model = tf.keras.models.Sequential([ 

  tf.keras.layers.Flatten(input_shape=(28, 28)), 

  tf.keras.layers.Dense(128, activation='relu'), 

  tf.keras.layers.Dropout(0.2), 

  tf.keras.layers.Dense(10) 

]) 

 



#For each example the model returns a vector of "logits" 

#or "log-odds" scores, one for each class. 

 

predictions = model(x_train[:1]).numpy() 

predictions 

 

 

 

#The tensorflow tf.nn.softmax function converts these logits 

#to "probabilities" for each class:  

tf.nn.softmax(predictions).numpy() 

 

 

#The losses.SparseCategoricalCrossentropy loss takes a vector of logits 

#and a True index and returns a scalar loss for each example. 

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) 

loss_fn(y_train[:1], predictions).numpy() 

 

model.compile(optimizer='adam', 

              loss=loss_fn, 

              metrics=['accuracy']) 

 

model.fit(x_train, y_train, epochs=5) 

 

 

#The Model.evaluate method checks the models performance 

 

model.evaluate(x_test,  y_test, verbose=2) 

 

Now run it 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Lab 2: Perceptron 

import numpy as np 

 

X = np.array([ 

    [-2,4,-1], 

    [4,1,-1], 

    [1, 6, -1], 

    [2, 4, -1], 

    [6, 2, -1], 

 

]) 

 

y = np.array([-1,-1,1,1,1]) 

 

def perceptron_sgd(X, Y): 

    w = np.zeros(len(X[0])) 

    eta = 1 

    epochs = 20 

 

    for t in range(epochs): 

        for i, x in enumerate(X): 

            if (np.dot(X[i], w)*Y[i]) <= 0: 

                w = w + eta*X[i]*Y[i] 

 

    return w 

 

w = perceptron_sgd(X,y) 

print(w) 

 


