Introduction to Machine Learning

Introduction

People often conflate machine learning with artificial intelligence. While the two are
closely intertwined, they are not synonymous. Artificial intelligence is concerned with
developing synthetic intelligence at some level. At the more basic, and more practical level, it is
concerned with expert systems. At a more advanced, and more speculative level, Al is about
synthetic consciousness.

Machine learning is concerned with algorithms that improve their performance over time
based on input. In other words, the algorithm learns to perform a particular task better over time.
This is not generalized intelligence, or even expertise. It is improving the performance of a
single, specific task. While that may not sound as exciting as expert systems and artificial
consciousness, it is actually something that is working today. There are many real world
applications of machine learning. Machine learning is used in facial recognition, natural
language processing, analyzing medical images, and many other tasks.

Machine learning involves a range of mathematical techniques including statistics.
However, it is important to keep in mind that machine learning is not merely the application of
statistics. Simply applying statistics to a given problem may indeed yield results, but that is not
machine learning.

Basics of Machine Learning

The concept of machine learning, as was stated in the beginning of this tutorial, is to
provide an algorithm a means to improve its performance over time. Most machine learning
algorithms can be divided into one of two categories. The first are called supervised machine

learning, the second are unsupervised machine learning. The names are a bit misleading. It is not

about a human directly supervising every step. It is really about the outcome. In supervised
machine learning we know what the desired outcome is, and we are training the algorithm to
accurately meet a specific goal.

A great application of supervised machine learning is found in a common laboratory
assignment used in machine learning courses. Students are given a dataset of images of birds.
The task is to train an algorithm to recognized bird species by analyzing features such as color of
plumage, beak shape/size, etc. The goal is already known. The student can easily identify a
robin, hawk, blue jay, etc. The task is to train the computer algorithm to do the same.
Unsupervised machine learning is often used when we don’t know what is actually in the data.
We want the algorithm to find specific patterns or clusters. It will still require a human to analyze
the results in order to divine their meaning, but the algorithm can inform us of what patterns
exist.

When utilizing machine learning, there are various terms one must be familiar with. This
is applicable regardless of the type of algorithm or the purpose of the machine learning project.
The first such term is domain. A domain is the area in which the machine learning project is
applied. For example, when applying machine learning to diagnosing neurological disorders
from brain scans, the domain in neurology. One need not be an expert in the domain in order to
implement a machine learning project, but having at least some knowledge of the area is
essential.

Another term you will encounter frequently is model. This term has a wide range of
definitions depending on the application. For example, in Microsoft Azure, a model is defined as

a file that has been trained to recognize certain types of patterns'. Another common definition is

! https://learn.microsoft.com/en-us/windows/ai/windows-ml/what-is-a-machine-learning-model

that a machine learning model is the output of an algorithm that includes both data and the
prediction algorithm?. Yet another definition is that a machine learning model is the
mathematical representation of the output of the training process®. While these varied definitions
may seem divergent, even contradictory, they are actually getting to the same point. Once you
have completed training an algorithm, it should then be able to accomplish whatever task it has
been trained for. The output of training is the machine learning model. Thus, it does indeed
combine data and the prediction algorithm. And it is the output of the training process.
Furthermore, in the Azure world, it is represented as a file.

Optimization is also commonly encountered in machine learning. Optimization,
mathematically, is a process of minimizing some loss function. Loss functions describe
discrepancy between predictions of a given model and the actual data found in the field.
Optimization, in and of itself, is not machine learning. However, optimization can utilize
machine learning. Furthermore, many machine learning algorithms incorporate optimization.

Supervised Algorithms

With supervised machine learning you know the outcome you wish to achieve. For
example, you know that you want to identify birds. Each data point that is input has features and
associated labels. The goal of a supervised machine learning algorithm is to use those features
and map the input to the appropriate output labels. This is done by working with training data
until the algorithm achieves sufficient accuracy. The loss function in the algorithm measures the
accuracy of the algorithm. All supervised machine learning algorithms share specific steps:

1. Determine the type of data in the training set and gather a training set of data.

2 https://machinelearningmastery.com/difference-between-algorithm-and-model-in-machine-learning/
3 https://www javatpoint.com/machine-learning-models

2. Determine the input features that will be used to evaluate the input data.

3. Choose or design an algorithm for machine learning

4. Run the training set and evaluate the accuracy.

One area of research in machine learning is to determine which algorithms have the greatest
accuracy with specific types of data. For example, what algorithms are best at identifying a
tumor based on MRI scans of the brain.

Supervised machine learning algorithms also must confront the bias variance problem. Bias
errors originate from erroneous assumptions in the algorithm. In statistics, bias refers to the
difference between an expected value and the true value of a parameter being estimated. A zero
bias means the algorithm is completely unbiased. Variance errors are caused by the algorithm
being too sensitive to small fluctuations in the training set. Variance errors usually lead to
overfitting the algorithm to the training data set. The problem is that generally speaking,

increasing bias decreases variance and vice versa. Figure 9.1 illustrates this concept.

0,0
¢ ¢
‘ |
. .
High bias/low variance Low bias/High variance
#
¢ ®
@
High bias/High variance Low bias/low variance

Figure 9.1 Variance and Bias

As can be clearly seen in figure 9.1, the ideal is to have both low bias and low variance. Any

other scenario will lead to some type of error.
Unsupervised Algorithms
With unsupervised machine learning, one does not know that result being sought. Consider the

example of supervised machine learning using identification of birds. The classifications are

known in advance, and a human being can determine if the results are correct. In unsupervised

machine learning, the goal is to determine what patterns exist in the data, without a prior
determination of what the classifications might be.
Clustering

One common approach to unsupervised machine learning includes clustering methods.
The goal of the algorithm is to group the input data in such a manner that items in the same
group have more similarities to each other than they do to items in other groups. The human
operating the algorithm may not have any idea what those groups will be before the algorithm is
executed. This can be one of the most interesting applications of machine learning. Clustering
can reveal patterns that the human operating the algorithm may not have even suspected.

There are several different clustering models that can be used. Connectivity models are
based on distance. That means that each input set is a vector, and the algorithm determines the
distance between input vectors to determine clusters. Another common approach is the centroid
model. In this approach each cluster has a single mean vector which is the centroid for that
cluster.

Graph models are also important. In graph model clustering, graph cliques are the basis
for clustering the input data. A clique is a subset of vertices in a graph such that every two
distinct vertices in the clique are adjacent. These models utilize graph theory to cluster data.

Density models are a bit simpler. These models simply look for regions of density in the
data space. Such regions are then determined to be clusters, and data is grouped by cluster. This
approach is used in algorithms such as DBSCAN.

Anomaly Detection
Anomaly detection methods are used in data analysis as well as machine learning. The

concept is fairly simple. The algorithm seeks any outliers or anomalies in the data. An outlier or

anomaly is any data point that deviates from the rest of the data enough to consider it may not be
related. In statistics, outliers are sometimes removed from the data. However, when using
anomaly detection machine learning algorithms, the idea is to find the outliers.

Local outlier factor (LOF) is perhaps the most common algorithm for anomaly detection.
This algorithm uses the concept of local density. LOF compares the local density of an object
with that of its neighboring data points. If a data point has a lower density than its neighbors,

then it is considered an outlier
Specific Algorithms

K-Nearest Neighbor

The k-nearest neighbors’ algorithm (KNN) is a non-parametric method used on both
regression and classification. For the purposes of malware development, it would be most useful
as a classification method for improving target acquisition. When applying k-NN classification
the output is membership in a given class. Therefore, classes are predetermined. The simplest
model would be target and non-target. However, that flat taxonomy can be expanded to include
classifications of likely target and likely non-target. The k-nearest neighbor algorithm is
essentially determining the K most similar instances to a given “unseen” observation. Similarity
being defined according to some distance metric between two data points. A common choice for

the distance is the Euclidean distance as shown in equation 9.1.

d(z,2') = /(@1 — 25) + (22 — 25)* + ... + (2 — zh)®
(eq 9.1)

The algorithm functions by iterating through the entire dataset and computing the distance
between x and each training observation. Then the conditional probability for each class is

estimated using the function shown in equation 9.2.

) 1 .
Py=jlX =2)= 2> 10V =j)
ieA

(eq 9.2)

Naive Bayes

Naive Bayes classifiers are essentially classifiers that work on probabilities applying Bayes
theory. These algorithms are well established and have been studied for decades. They are
widely used for categorizing text. For example, spam filters utilize these algorithms. Conditional
probabilities in Bayes theorem are often represented by the formula shown here. The C are the

classes being examined. This is shown in equation 9.3.

p(Cy) p(x | Cy)

p(Ce|x) = =T

(eq 9.3)

Naive Bayes is a relatively simple technique for classifying. Class labels are assigned to
problem instances. These are represented as vectors of feature values. The features are
independent variables in the formula. This is an appropriate modality for training weaponized
malware based on selected feature sets for the malware.

There are a number of variations on naive Bayes. Among those variations are the Gaussian
naive based which is often used when dealing with continuous data. Each class is distributed
according to a Gaussian distribution. Multinomial naive Bayes is used when certain events are
generated by a multinomial. The specific selection of a particular version of the Naive Bayes
algorithm will be dependent on the operational needs and the goals of the training and modeling.
Gradient Descent

Gradient descent is an optimization algorithm used to minimize some function by

iteratively moving in the direction of steepest descent as defined by the negative of the gradient.

In machine learning, we use gradient descent to update the parameters of our model. Parameters
refer to coefficients in Linear Regression and weights in neural networks.

Ultimately this algorithm was designed to find the minimum of a function. Starting at the
top of the mountain, we take our first step downbhill in the direction specified by the negative
gradient. Next we recalculate the negative gradient (passing in the coordinates of our new point)
and take another step in the direction it specifies. We continue this process iteratively until we
get to the bottom of our graph, or to a point where we can no longer move downhill-a local
minimum. image source. The size of these steps is called the learning rate. With a high learning
rate, one can cover more ground each step, but we risk overshooting the lowest point since the
slope of the hill is constantly changing. Put more concisely, Gradient descent is an optimization
algorithm used to find the values of parameters of a function (f) that minimizes a cost function.
Support Vector Machines

Support vector machines (SVM) also called support vector networks are supervised
machine learning algorithms often used for classification. Each data point is viewed as a n-
dimensional vector (i.e., a vector of n numbers). The SVM creates a hyperplane or set of
hyperplanes that can be used for tasks such as classification. This, of course, necessitates
defining a hyperplane. Hyperplanes are a concept borrowed form geometry. In geometry, a
hyperplane is a subspace with a dimension that is one less than that of the ambient space.
Mathematically, ambient space is the space surrounding some mathematical object along with
the object itself. If you consider a 3 dimensional space, then any hyperplanes would be 2
dimensional.

In SVM’s the goal is to determine if there is a hyperplane that separates the pints in the

input vector. This allows the classification of the data. Consider figure 9.2.

N2

Figure 9.2 Hyperplanes

In figure 9.2, N1 effectively separates the data so that the distance from it to the nearest
datapoint is maximized. N2 does not accomplish this goal. Therefore, N1 is used to classify the
data. If an appropriate hyperplane exists, as it does in figure 9.2, it is called the maximum margin
hyperplane. Put another way “The objective of the support vector machine algorithm is to find a
hyperplane in an N-dimensional space(N — the number of features) that distinctly classifies the
data points.”

Support vector machines are used in image classification, recognizing handwriting, and
even classifying proteins. The name stems from the fact that the support vectors are the data
points which are closest to the hyperplane. These points define the separating line between
classes of data points. Margins are the term for a gap between the two lines that are closest to the

class points®. Support vector machines are supported in the scikit library®, which you can use in

Python to create machine learning algorithms.

4 https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-
934a444fcad7

5 https://www.datacamp.com/tutorial/svm-classification-scikit-learn-python

6 https://scikit-learn.org/stable/modules/svm.html

When working with support vector machines, another important concept is the kernel. A
kernel transforms an input from the dataspace into the form needed. The two most common types
are linear kernels and polynomial kernels. A linear kernel uses a dot product between any two
input vectors (if you don’t know what a dot product is, it is from linear algebra). A polynomial
kernel can be used to distinguish nonlinear input spaces, including curved input spaces. There are
other types of kernels such as the radial basis function kernel. The radial basis function kernel is
used when there is no prior knowledge regarding the input dataset.

The following code uses a support vector machine to predict the probability of an
epileptic seizure. The test data can be downloaded from

https://www.kaggle.com/code/yatindeshpande/seizure-prediction-using-svm/data

#import libraries

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g., pd.read csv)
import matplotlib.pyplot as pyplot

import seaborn as sn

import warnings

note that this next line is importing the support vector machine

so, most of the work is done for you.

SVC is the classifer

see https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
from sklearn.svm import SVC

from sklearn.preprocessing import StandardScaler

from sklearn.model selection import train_test split, cross_val score

#import the data. You can download the CSV from
#https://www.kaggle.com/code/yatindeshpande/seizure-prediction-using-svm/data
#you will also find a similar algorithm at that location
EData = pd.read_csv('EpilepsyData/EpilepsyData.csv')
EData = EData.drop(columns = EData.columns[0])
EData.head()

cols = EData.columns

tgt = EData.y

tgt[tgt>1]=0

ax = sn.countplot(tgt,label="Count")

non_seizure, seizure = tgt.value counts()

https://www.kaggle.com/code/yatindeshpande/seizure-prediction-using-svm/data

print('The number of trials for the non-seizure class is:', non_seizure)
print('The number of trials for the seizure class is:', seizure)
EData.isnull().sum().sum()

Y = EData.iloc[:,178].values
Y .shape

Y[Y>1]=0

Y

X = EData.iloc[:,1:178].values
X.shape

X train, X test, y train, y test = train_test split(X, Y, test size =0.3)

sc = StandardScaler()

X train = sc.fit_transform(X_train)

X _test = sc.transform(X _test)

if you don't provide a kernel type

rbf is used by default.

clf = SVC(kernel="poly', degree=8)

clf.fit(X _train, y_train)

y_pred svc = clf.predict(X_test)

acc_svc = round(clf.score(X train, y train) * 100, 2)

print("Accuracy is:",(str(acc_svc)+'%"))
new_inputl = [EData.iloc[6, :177]]

new_output = clf.predict(new_inputl)

if new_output==[1]:

print('There is a high probability of seizure')
else:

print('There is a low probability of seizure')

If you execute the code as written you should see the result shown in figure 9.3

E:\Projects\publishing\Machine Learning For Neuroscience>python svmexample.py
The number of trials for the non-seizure class is: 920©
The number of trials for the seizure class is: 2300

Accuracy is: 96.01%
There is a high probability of seizure

Figure 9.3 SVM

Note the line of code that states:

clf = SVC(kernel="poly', degree=8)
This is choosing a kernel type. If you don’t choose any it will use the radial basis function. To
use the default, you would simply write:
clf = SVC()

If you wish to use the sigmoid kernel try this line

clf = SVC(kernel='sigmoid')

It is a good practice to try different kernels to compare the performance. There is a reason that
there are a range of kernels to choose from. Some kernels are more appropriate for particular
applications and particular datasets. Unfortunately, this part of machine learning is a bit of an art,

and requires trial and error.
Feature Extraction

Many algorithms will require you to extract the features of interest from the dataset being
used. There are several algorithms one can use to do this, the most common are discussed in this
section.

PCA

Principle component analysis (PCA) is a very widely used technique. It is particularly
useful for large data sets that have a high number of features. PCA is essentially a statistical
technique for reducing the dimensionality of a dataset. The principle components for a set of
points in a real coordinate space are a series of p unit vectors where the i-th vector is the
direction of a line that best fits the data. If this description seems a bit vague to you, it is based

on a fundamental linear algebra understanding.

PCA is not necessarily appropriate for all applications. The following quote defines three
situations wherein PCA is appropriate’.

Do you want to reduce the number of variables, but aren’t able to identify variables to

completely remove from consideration?

Do you want to ensure your variables are independent of one another?

Are you comfortable making your independent variables less interpretable?

Principle component analysis finds lines and planes in the K-dimensional space that
approximate the data as closely as possible. Closely is defined using least squares. Least squares
is a method to find the line that best fits the data. A line or plane that is the least squares
approximation of a set of data points makes the variance of the coordinates on the line or plane
as great as possible. Fortunately, PCA is actually build in to sklearn.decomposition. The

following code will demonstrate PCA.

#import your modules

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

from sklearn.decomposition import PCA

#create random dots to illustrate

rng = np.random.RandomState(1)

X =np.dot(rng.rand(2, 2), rng.randn(2, 100)).T
plt.scatter(X[:, 0], X[:, 1])

plt.axis(‘equal')

plt.show()

#you should expiriment with different
#numbers of components

pca = PCA(n_components=4)
pca.fit(X)

print(pca.components_)
print(pca.explained variance)

7 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e¢0a9¢

def draw_vector(v0, v1, ax=None):
ax = ax or plt.gca()
arrowprops=dict(arrowstyle="->',
linewidth=2,
shrinkA=0, shrinkB=0)
ax.annotate(", v1, v0, arrowprops=arrowprops)

plot data

plt.scatter(X[:, 0], X[:, 1], alpha=0.2)

for length, vector in zip(pca.explained variance , pca.components):
v =vector * 3 * np.sqrt(length)
draw_vector(pca.mean_, pca.mean_ + V)

plt.axis(‘equal');

plt.show()

When you execute the code, you will see the following three images, figures 9.4 to 9.6.

%1 Figure 1 — O X

20
1.5
1.0
0.5

0.0

-1.0

-15

$ Q=

Figure 9.4 Data before PCA

i

-|Figure 1 - O X

20
15
1.0
0.5

OO - N

A%

-0.5

-1.0

-2 -1 0 1 2

At Q= X=1.67 y=-1.40

Figure 9.5 Data after PCA

E:\Projects\publishing\Machine Learning For Neuroscience>python pca.py
[[-©.94446029 -©.32862557]

[-8.32862557 ©.94446029]]
[©.7625315 ©.0184779]

Figure 9.6 PCA Variance Data

As you can see, sklearn.decomposition includes the PCA algorithm for you. You could
implement the algorithm with even less information than is provided in this section. However, it
is always best to have a general understanding of what is being done, even if you have a tool that

automates the action for you.

Artificial Intelligence

As was pointed out at the beginning of this tutorial, people often conflate artificial
intelligence with machine learning. This section will briefly touch on the subject of artificial
intelligence.

General Intelligence

Actual synthetic consciousness is not something that has been developed, or that is even
close to being developed. However, more limited forms of machine intelligence can and have
been developed. One such form of machine intelligence are expert systems. Expert systems
utilize a knowledge base to make inferences from data. In many cases these systems will use
machine learning algorithms, such as the ones we have discussed in this tutorial, as part of their
functionality. The primary difference between simply applying machine learning and having an
expert system is the breadth of applicability. A machine learning algorithm might learn to
recognize tumors in MRI brain scans. An expert system can take that information and along with
its knowledge base, make inferences regarding prognosis and treatment.

Medical expert systems are the systems of most interest in text focused on machine
learning for neuroscience. A journal article from 1987 describes medical expert systems, and this

description should aid you in understanding how expert systems work®:

8 https://journal.chestnet.org/article/S0012-3692(15)42851-X/fulltext

“A medical expert system i1s a computer program that, when well-crafted, gives decision
support in the form of accurate diagnostic information or, less commonly, suggests
treatment or prognosis. Diagnostic, therapeutic, or prognostic advice is given after the
program receives information (input) about the patient, usually via the patient’s
physician. Expert systems have characteristics which make them dissimilar from other
kinds of medical software. One of these characteristics is that the sequence of steps used
by the expert system in coming to a diagnostic or therapeutic conclusion often is designed
to mimic clinical reasoning. Also, the sequence of steps is, in many expert systems,
available to the physician using the system. Because clinical medicine often does not deal
in certainty, expert systems may have the capability of expressing conclusions as a
probability. It is generally agreed that expert system software must contain a large
number of facts and rules about the disease or condition in question in order to deliver
accurate answers. It has been estimated that two general internal medicine textbooks and
three specialty textbooks would require 2 million rules.
Because large amounts of data are needed, in the recent past, expert systems were only
feasible when used with large, expensive computers. With the advent of more powerful
microcomputers and more efficient microcomputer languages, expert systems could now
be available to any physician with a microcomputer.”
In general, to be considered an expert system, the system must exhibit several
characteristics. The first, and probably the most obvious, is a high level of expertise. The system
should be able to make decisions on par with those of human experts in the field. In the case of

neurology, which means an artificial system whose decisions are comparable to that of trained

neurologists. The system should also be reliable and flexible. Perhaps most importantly, the
system should not be prone to errors, as a human would be.
Synthetic Consciousness

Before one can effectively address the question synthetic consciousness, it is first
instructive to examine the basis for biological consciousness. While one position of this paper is
that synthetic consciousness need not necessarily be analogous to human consciousness, briefly
examining human consciousness does provide a useful starting point for researching artificial
consciousness. There have been a range of ideas posited regarding consciousness ranging from
the philosophical to the biological. Of particular interest for developing synthetic consciousness
is the orchestrated objective reduction theory posited by Roger Penrose and Stuart Hameroff’.
Orchestrated objective reduction (often called Orch OR) is the hypothesis that biological
consciousness is an emergent property of quantum activity within the microtubules of neurons.
This is a divergence from classical neurological theories that postulate biological consciousness
is an emergent property of the computations performed by neurons!®. Essentially, classical
neurobiology and cognitive science see neuron activity reaching a threshold of complexity that
leads to consciousness emerging. Conversely Orchestrated Objective Reduction sees
consciousness as an emergent property derived from quantum activities within the microtubules

of the neurons themselves.

° Hameroff, S., & Penrose, R. (2014). Consciousness in the universe: A review of the ‘Orch OR’theory. Physics of
life reviews, 11(1), 39-78.

10 Fingelkurts, A. A., Fingelkurts, A. A., & Neves, C. F. (2013). Consciousness as a phenomenon in the operational
architectonics of brain organization: criticality and self-organization considerations. Chaos, Solitons & Fractals, 55,
13-31.

Essentially Hameroff proposed that microtubules were suitable candidates for quantum
processing. Microtubules contain hydrophobic pockets that can contain delocalized electrons.
Hameroff further posited that these electrons can become quantumly entangled and would form a
Bose-Einstein condensate. Penrose and Hameroff” s theories have been widely criticized in the
neuroscientific community. Among the criticisms have been arguments that a biological system
cannot avoid quantum de-coherence due to the environment of the biological system. However,
advances in quantum computing have cast doubt on this criticism as researchers have achieved
quantum states for several seconds at room temperature'!. Furthermore, evidence suggests that
plants routinely use quantum-coherent electron transport mechanisms as part of photosynthesis'2.

Penrose and Lucas also argued that Godel's theorem dictates that no process or algorithm
can deterministically predict its outcome. Penrose further posited that this meant no algorithmic
process could lead to consciousness. This was the issue that led Penrose to explore quantum
behavior as the substrate for human consciousness, due to the non-deterministic nature of
quantum interactions. In addition to forming a theoretical model of the basis for human
consciousness, Penrose and Lucas were stating that true artificial intelligence is not possible
from an algorithmic process.

Many neuroscientists disagree with Penrose, Hameroff, and Lucas. Instead, the prevailing

opinion in neuroscience is that consciousness is an emergent property that is predicated on

' Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., ... & Pezzagna, S. (2010). Quantum
register based on coupled electron spins in a room-temperature solid. Nature Physics, 6(4), 249.

12

Lambert, N., Chen, Y. N., Cheng, Y. C., Li, C. M., Chen, G. Y., & Nori, F. (2013). Quantum biology. Nature
Physics, 9(1), 10. Laureys, S., Gosseries, O., & Tononi, G. (Eds.). (2015). The neurology of consciousness:

cognitive neuroscience and neuropathology. Academic Press.

meeting a certain threshold of neurological complexity. In this view, consciousness will emerge
when the neurology reaches a particular level of complexity. There is a body of evidence that
supports this view. Primarily, comparative studies of neuro anatomy and physiology among
diverse species shows at least some association between the complexity of the brain and the level
of consciousness. Neurological complexity is more than just the number of neurons in the
system. It also involves the connectivity between neurons. The complexity of the system in its
entirety appears to have at least some correlation to consciousness.

Yet another neurobiological view of consciousness was posited by Nobel Laurate Francis
Crick. Crick posited that consciousness in inextricably associated with how the brain uses short-

term memory processes to facilitate sensory input!?

. Crick focused primarily on visual input, but
his work is applicable to any sensory input. His focus was on the neurological correlates of
visual processing. Not merely detecting an object, but processing that sensory input.

What all of this research really means is that we do not yet have a clear understanding of
the origin of human consciousness. Without that, it would be quite difficult to create synthetic
consciousness. Before one can even consider research into synthetic consciousness, it is
necessary to first define consciousness. Blackmore!* states that consciousness has no generally
accepted definition in science or in philosophy. This statement, while accurate, does not address
the problem encountered in artificial intelligence research. Blackmore’s commentary is more
applicable to a complete definition of consciousness for the purposes of cognitive science and

psychology. For the purposes of furthering research into artificial consciousness, it is not

necessary to derive a broadly applicable, generally accepted definition of consciousness. What is

13 Crick, F., & Koch, C. (2003). A framework for consciousness. Nature neuroscience, 6(2), 119.
14 Blackmore, S. (2013). Consciousness: an introduction. Routledge.

required is a minimalistic definition that is operationally effective. While cognitive scientists
may explore a range of definitions of consciousness'>, for artificial intelligence research it is only
necessary to select a single, operationally viable, elementary definition of consciousness. For the
purposes of this paper, a simple definition of consciousness is espoused. That definition is simply
self-awareness'® . Therefore, synthetic consciousness would be operationally defined as any
artificial device or software that is self-aware. This is a minimalistic definition and does not
attempt to address issues regarding emotions, other related cognitive functions or philosophical
questions.

Self-awareness provides a simple definition that avoids a range of philosophical issues as
well as being basic enough to be acceptable as a minimalistic operational starting point. There
certainly are researchers that would add to that definition, but as a minimal definition that can be
broadly accepted and operationally effective, self-awareness is an operative definition. However,
even with this simple definition, there is still an issue of how to recognize and measure self-
awareness. Identifying self-awareness depends on a reliable methodology. The Turing test has
long been accepted as a mechanism for identifying artificial intelligence. While this has been
accepted for decades, recent advances in software cast some doubt on the reliability of that
testing modality. It is certainly possible now for software to be programmed to simulate a level
of dialog that is difficult to differentiate from human, self-directed dialog. It should also be noted

that the nature of the Turing test has an implicit assumption that consciousness must at least, at a

15 Bermudez, J. L. (2014). Cognitive science: An introduction to the science of the mind. Cambridge University
Press.

16 Pope, K. (Ed.). (2013). The stream of consciousness: Scientific investigations into the flow of human experience.
Springer Science & Business Media.

superficial level, appear analogous to human consciousness. This is an understandable definition,
given that human consciousness is the model that researchers have at hand. However, that model
entails a number of complexities that are not necessary to detect consciousness. It also assumes

human consciousness is the only model for consciousness. Therefore, the Turing test may not be

the appropriate modality for detecting synthetic consciousness.

Exercises

Lab 1 Detecting Parkinson’s

First you will download the dataset from Kaggle
https://www.kaggle.com/code/vuppalaadithyasairam/feature-selection-xgboost-97-4-test-acc/data . You
will also find similar Python scripts there.

Now you will code the following script

import numpy as np #

import pandas as pd # data processing, CSV file I/O

import numpy as np

from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.model selection import train_test split

from xgboost import XGBClassifier

#read in data. Remember when you download you need
#to change the file name to one word with .csv not
#.xls
data=pd.read_csv('parkinsons/Parkinssondisease.csv')

#now display the data we have
data.head()
data=data.drop(['name'],axis=1)
data.info()

corr=data.corr()

cor_target = abs(corr["status"])

#Selecting highly correlated features

relevant features = cor_target[cor_target>0.3]

relevant_features

data=data.drop(['MDVP:Fhi(Hz)',MDVP:lJitter(%)', MDVP:RAP', MDVP:PPQ', Jitter: DDP',/NHR','DFA
'],axis=1)

data.info()

for x in data.columns:

data[x]= (data[x]-data[x].min())/(data[x].max()-data[x].min())
data.head()
y=data['status']

x=data.drop(['status'],axis=1)

X train,X test,y train,y test=train_test split(x,y,test size=0.2 stratify=y)

sve_model=XGBClassifier()
svc_model.fit(X_train,y train)

predictions= svc_model .predict(X _train)
percentage=svc_model.score(X_train,y train)
res=confusion matrix(y_train,predictions)
print("Training confusion matrix")

print(res)

predictions= svc_model .predict(X_test)
train_percentage=svc_model.score(X train,y train)
test_percentage=svc_model.score(X_test,y test)
res=confusion_matrix(y_test,predictions)
print("Testing confusion matrix")

print(res)

check the accuracy on the training set
print(sve_model.score(X train, y_train))
print(sve_model.score(X _test, y_test))
print(f"'Train set: {len(X_train)}")

print(f"Train Accuracy={train_percentage*100}%")
print(f"Test set: {len(X_test)}")

print(f"Test Accuracy={test percentage*100}%")

When you execute this you should see output like you see here:

E:\Projects\publishing\Machine Learning For Neuroscience>python parkinsons.py
<class 'pandas.core.frame.DataFrame’>

RangeIndex: 195 entries, © to 194

Data columns (total 23 columns):

Column Non-Null Count

non-null floate4
non-null floated
:Flo(Hz) non-null floated
:Jitter(%) non-null floate4
:Jitter(Abs) non-null floate4
:RAP non-null floated
:PPQ non-null floated
Jitter:DDP non-null floaté4
MDVP : Shimmer non-null floaté4
MDVP : Shimmer(dB) non-null floate4
Shimmer:APQ3 non-null floate4d
Shimmer:APQS5 non-null floate4d
MDVP : APQ non-null floate4d
Shimmer:DDA non-null floate4
NHR non-null floated
HNR non-null floated
status non-null inte4
RPDE non-null floated
DFA non-null floated
spreadl non-null floated
spread2 195 non-null floated
21 D2 195 non-null floatesd
22 PPE 195 non-null floatesd
dtypes: floaté4(22), inté4(1)
emory usage: 35.2 KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 195 entries, © to 194

WHO~NoOOWwmpPhwWNEO®

Much of the output may be new to you. Some of it is specific to Parkinson's diagnosis. Some terms are
defined here for you. A more comprehensive discussion of the Parkinson's specific terms can be found at
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434464/

D2: Correlation dimension, a measure of the dimensionality of the space occupied by a set of random
points. This comes from chaos theory.

RPDE: Recurrence period density entropy. THis is used in dynamical systems to determine periodicity.
Shimmer:DDA: Dysphonic Voice Pattern Analysis

Shimmer:APQ3: This Is a three point amplitude perturbation quotient. It Is analyzing voice patterns.

