Lesson 3: Risk Management

Risk Assessment

Assets: valuable resources you are trying to protect.

Risks: the potential that **a** chosen action or activity will lead to a loss.

Threats: a negative action that may harm a system.

Vulnerabilities: a weakness that allows a threat to cause harm.

Impact: the severity of the damage, sometimes expressed in dollars.

TCO – Total Cost of Ownership

ROI - Return on Investment

Threats, Vulnerabilities, and Risks

Threat	Vulnerability	Risk		
Intruder	No security guard or controlled entrance	Theft		
Hacker	Misconfigured firewall	Stolen credit card information		
Current employee	Poor accountability; no audit policy	Loss of integrity; altered data		
Fire	Insufficient fire control	Damage or loss of life		
Hurricane	Insufficient preparation	Damage or loss of life		
Virus	Out-of-date antivirus software	Virus infection and loss of productivity		
Hard drive failure	No data backup	Data loss and unrecoverable downtime		

- Threat—a potentially negative occurrence
- Vulnerability—a weakness in a system
- Risk—a matched threat and vulnerability

 NOTE: Differentiating between the three is critical for the test.

SLE, ARO, & ALE

- SLE × ARO = ALE
- Single Loss Expectancy (SLE)
 Annualized Rate of Occurrence (ARO)
 Annualized Loss Expectancy (ALE)

The Annualized Loss Expectancy (ALE) is the expected monetary loss that can be expected for an asset due to a risk over a one year period. It is defined as: ALE = SLE * ARO where SLE is the Single Loss Expectancy and ARO is the Annualized Rate of Occurrence

Computing Risk

- **Exposure Factor** The Exposure Factor (EF) is the percentage of value an asset lost due to an incident.
- **Single Loss Expectancy** The Single Loss Expectancy (SLE) is the cost of a single loss. SLE is the Asset Value (AV) times the Exposure Factor (EF).
- Annual Rate of Occurrence The Annual Rate of Occurrence (ARO) is the number of losses you suffer per year.
- Annualized Loss Expectancy
- The Annualized Loss Expectancy (ALE) is your yearly cost due to a risk. It is calculated by multiplying the Single Loss Expectancy (SLE) times the Annual Rate of Occurrence (ARO).

Basic formulas

SLE = Asset Value (AV) * Exposure Factor (EF) Risk = Probability of the Risk * Cost of the Eventuality ALE = Single Loss Expectancy (SLE) * Annual Rate of Occurrence (ARO)

Risk Management

Risk management is the process of identifying vulnerabilities in an organization's information systems and taking carefully reasoned steps to assure the confidentiality, integrity, and availability of all the components in the organization's information systems

The primary deliverable from risk assessment was a list of documented vulnerabilities, ranked by criticality of impact

Risk

residual risk

What is left after mitigation

Is it below acceptable levels

If not then take further steps

industrial espionage, supply disruption, service outage, (primary suppliers with common level-2 suppliers, supply chain entity weaknesses (inadequate capacity), foreign intelligence entity inadequate cyber hygiene Non-adversarial: E.g., natural disaster, poor quality products/services, geopolitical (war), legal/regulatory Internal: E.g., vulnerable information systems and changes affecting supply (sanctions) components, unpatched systems, ineffective security controls, lack of cyber awareness Likelihood (probability of a threat exploiting a vulnerability[s]) Adversarial: Capability and intent Non-adversarial: Historical rate of occurrence Impact-degree of harm Ex. Impact: Loss of user and public trust due to data disclosure To: mission/business function Ex. Impact: Loss of classified information resulting in compromised national security Ex. Impact: Production delays due to supply chain disruptions Ex. Impact: Loss of intellectual property due to data exfiltration Cybersecurity Risks Throughout the Supply Chain

Threats

Adversarial: E.g., insertion of malware, counterfeits,

Supply Chain Risk

Figure 6: Cybersecurity Risks in the Supply Chain

https://www.dafcio.af.mil/Portals/64/The%20Cyber%20Cake.pdf

Vulnerabilities

External: E.g., Interdependencies in the supply chain

The Cyber Resilience Engineering Framework Process

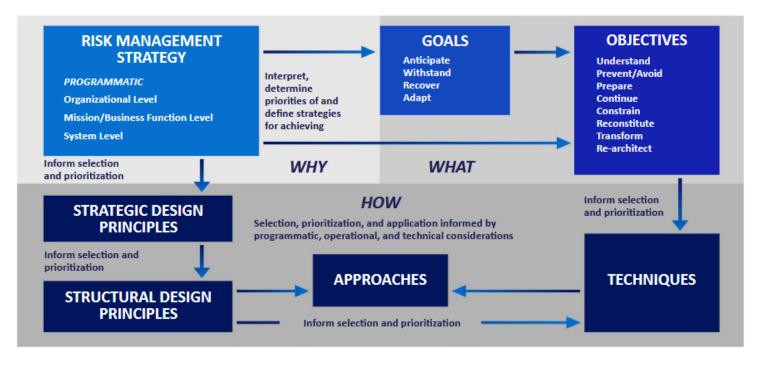
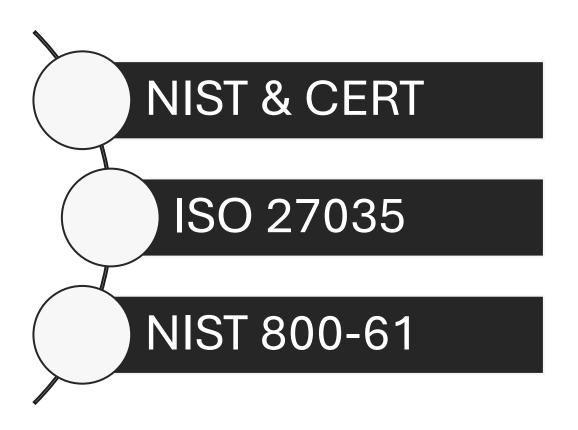



Figure 8: The Cyber Resilience Engineering Framework Process

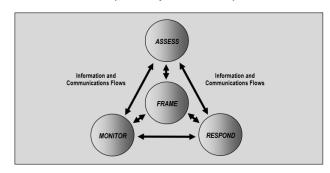
Incident Response

- ISO/IEC 27035 is the international standard for information security incident management, published by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC).
- It provides a structured framework for detecting, reporting, assessing, and responding to information security incidents in a consistent and effective manner.

- ISO/IEC 27035-1: Principles of incident management
 - Introduces the concepts, principles, and processes of incident management.
 - Defines key terms (e.g., event vs. incident).
 - Provides a high-level incident management lifecycle.
- ISO/IEC 27035-2: Guidelines to plan and prepare for incident response
 - Focuses on establishing an incident response capability (IRC).
 - Covers roles and responsibilities, policies, incident response plans, and communication channels.
 - Helps organizations build resilience and readiness.
- ISO/IEC 27035-3: Guidelines for incident response operations
 - Provides detailed operational guidance for handling incidents.
 - Covers incident detection, analysis, containment, eradication, recovery, and post-incident learning.
 - Encourages using metrics and lessons learned to improve future responses.

- The major points within the "Plan and Prepare" phase include the following:
 - information security incident management policy and commitment of top management;
 - information security policies, including those relating to risk management, updated at both corporate level and system, service and network levels;
 - information security incident management plan;
 - incident response team (IRT) establishment;
 - establish relationships and connections with internal and external organizations;
 - technical and other support (including organizational and operational support);
 - information security incident management awareness briefings and training;
 - information security incident management plan testing.

- Establishing an incident response capability should include the following actions:
 - Creating an incident response policy and plan
 - Developing procedures for performing incident handling and reporting
 - Setting guidelines for communicating with outside parties regarding incidents
 - Selecting a team structure and staffing model
 - Establishing relationships and lines of communication between the incident response team and other groups, both internal (e.g., legal department) and external (e.g., law enforcement agencies)
 - Determining what services the incident response team should provide
 - Staffing and training the incident response team.



- Establishing an incident response capability should include the following actions:
 - Creating an incident response policy and plan
 - Developing procedures for performing incident handling and reporting
 - Setting guidelines for communicating with outside parties regarding incidents
 - Selecting a team structure and staffing model
 - Establishing relationships and lines of communication between the incident response team and other groups, both internal (e.g., legal department) and external (e.g., law enforcement agencies)
 - Determining what services the incident response team should provide
 - Staffing and training the incident response team.

 NIST 800-30 is the U.S. standard for how to conduct risk assessments. The standard is divided into three chapters. The first is just introductory information such as the target audience and purpose of the standard.
 Chapter 2 discusses the risk management process and concepts. Chapter 3 provides a process for conducting a risk assessment.

2.1 RISK MANAGEMENT PROCESS

Risk assessment is a key component of a holistic, organization-wide risk management process as defined in NIST Special Publication 800-39, Managing Information Security Risk: Organization, Mission, and Information System View. Risk management processes include: (i) framing risk: (ii) assessing risk; (iii) responding to risk; and (iv) monitoring risk. Figure 1 illustrates the four steps in the risk management process—including the risk assessment step and the information and communications flows necessary to make the process work effectively. ¹³

•

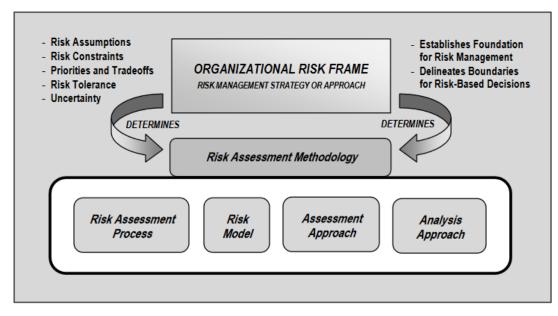


FIGURE 2: RELATIONSHIP AMONG RISK FRAMING COMPONENTS

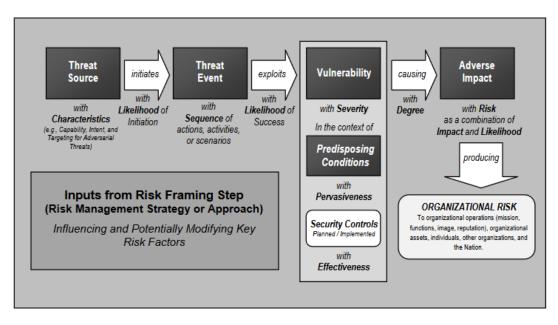
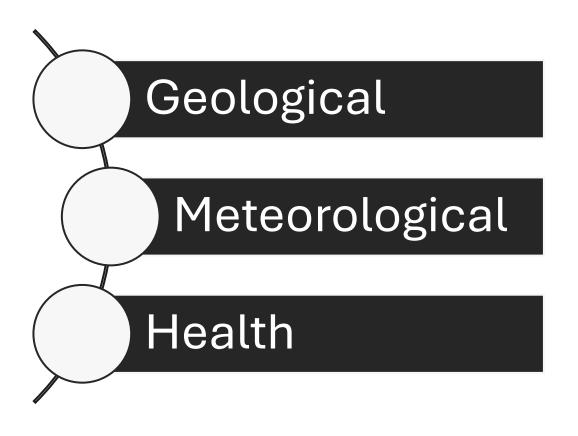
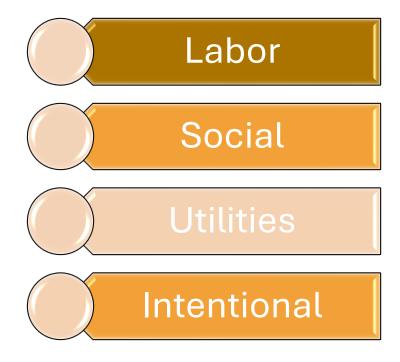



FIGURE 3: GENERIC RISK MODEL WITH KEY RISK FACTORS


What Is a Disaster

Any natural or man-made event that disrupts the operations of a organizational in such a significant way that a considerable and coordinated effort is required to achieve a recovery.

Natural Disasters

Man-made Disasters

BCP and DRP Differences and Similarities

BCP

Critical systems running until full-recovery.

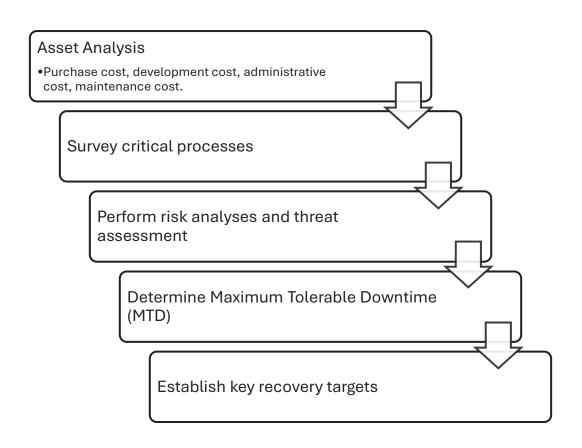
DRP

Full-recovery

- Standard for Information Security Management System (ISMS)
- Plan-Do-Check-Act cycle
 - Plan = define requirements, assess risks, decide which controls are applicable
 - Do = implement and operate the ISMS
 - Check = monitor and review the ISMS
 - Act = maintain and continuously improve the ISMS
- Document the entire process
- NOTE: PDCA is NOT in ISO 27001:2014

- ISO/IEC 27001 requires that management:
 - Systematically examine the organization's information security risks, taking account of the threats, vulnerabilities, and impacts;
 - Design and implement a coherent and comprehensive suite of information security controls and/or other forms of risk treatment (such as risk avoidance or risk transfer) to address those risks that are deemed unacceptable; and
 - Adopt an overarching management process to ensure that the information security controls continue to meet the organization's information security needs on an ongoing basis.
- Note that ISO27001 is designed to cover much more than just IT.

- The ISO/IEC 27001 certification,[5] like other ISO management system certifications, usually involves a three-stage external audit process defined by the ISO/IEC 17021[6] and ISO/IEC 27006[7] standards:
 - Stage 1 is a preliminary, informal review of the ISMS, for example checking the existence and
 completeness of key documentation such as the organization's information security policy, Statement
 of Applicability (SoA) and Risk Treatment Plan (RTP). This stage serves to familiarize the auditors with
 the organization and vice versa.
 - Stage 2 is a more detailed and formal compliance audit, independently testing the ISMS against the
 requirements specified in ISO/IEC 27001. The auditors will seek evidence to confirm that the
 management system has been properly designed and implemented, and is in fact in operation (for
 example by confirming that a security committee or similar management body meets regularly to
 oversee the ISMS). Certification audits are usually conducted by ISO/IEC 27001 Lead Auditors. Passing
 this stage results in the ISMS being certified compliant with ISO/IEC 27001.
- Ongoing involves follow-up reviews or audits to confirm that the organization remains in compliance with the standard. Certification maintenance requires periodic re-assessment audits to confirm that the ISMS continues to operate as specified and intended. These should happen at least annually but (by agreement with management) are often conducted more frequently, particularly while the ISMS is still maturing.


Industry Standards Supporting BCP and DRP

- NIST 800-34
 - Contingency Planning Guide for Information Technology Systems.
 - Seven step process for BCP and DRP projects
 - From U.S. National Institute for Standards and Technology
- NFPA 1600
 - Standard on Disaster / Emergency Management and Business Continuity Programs
 - From U.S. National Fire Protection Association

5 phases of BCP

- Project management & initiation
- Business Impact Analysis (BIA)
- Recovery strategies
- Plan design & development
- Testing, maintenance, awareness, training

Performing a Business Impact Analysis

Survey In-scope Business Processes

- Develop interview / intake template
- Interview a rep from each department
 - Identify all important processes
 - Identify dependencies on systems, people, equipment
- Collate data into database or spreadsheets
 - Gives a big picture, all-company view

Threat and Risk Analysis

- Identify threats, vulnerabilities, risks, for each key process
 - Rank according to probability, impact, cost
 - Identify mitigating controls

	А	В	С	D	Е
	Negligible	Minor	Moderate	Significant	Severe
ery Likely	Low Med	Medium	Med Hi	High	High
Likely	Low	Low Med	Medium	Med Hi	High
Possible	Low	Low Med	Medium	Med Hi	Med Hi
Unlikely	Low	Low Med	Low Med	Medium	Med Hi
ery Unlikely	Low	Low	Low Med	Medium	Medium

Develop Statements of Impact

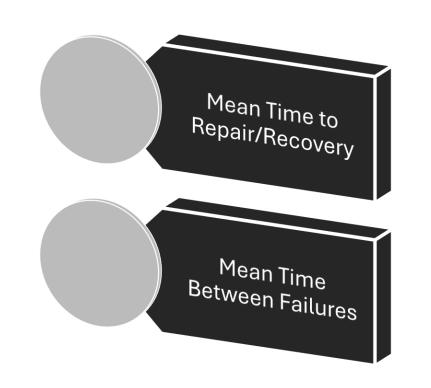
- For each process, describe the impact on the rest of the organization if the process is incapacitated
- Examples
 - Inability to process payments
 - Inability to produce invoices
 - Inability to access customer data for support purposes

Record Other Key Metrics

- Examples
 - Cost to operate the process
 - Cost of process downtime
 - Profit derived from the process
- Useful for upcoming Criticality Analysis

Determine Maximum Tolerable Downtime (MTD)

FOR EACH ORGANIZATION PROCESS



IDENTIFY THE MAXIMUM TIME THAT EACH ORGANIZATIONAL PROCESS CAN BE INOPERATIVE BEFORE SIGNIFICANT DAMAGE OR LONG-TERM VIABILITY IS THREATENED

PROBABLY AN EDUCATED GUESS FOR MANY PROCESSES

MTTR & MTBF

Ascertain Current Continuity and Recovery Capabilities

- For each organizational process
 - Identify documented continuity capabilities
 - Identify documented recovery capabilities
 - Identify undocumented capabilities
 - What if the disaster happened tomorrow

Develop Key Recovery Targets

RECOVERY TIME OBJECTIVE

RECOVERY POINT OBJECTIVE

Criticality Analysis

- Rank processes by criticality criteria
 - MTD (maximum tolerable downtime)
 - MTTR(Mean Time to Repair/Mean Time to Recover)
 - MTBF (Mean Time Between/Before Failures)
 - RTO (recovery time objective)
 - RPO (recovery point objective)
 - Cost of downtime or other metrics
 - Qualitative criteria
 - Reputation, morale, etc.

Quantitative v Qualitative

Quantitative RA – Assigns objective dollar costs to assets

Qualitative RA – Intangible values of data loss and other issues that are not pure hard costs

Risk Assessment

- Assets: valuable resources you are trying to protect.
- Risks: the potential that a chosen action or activity will lead to a loss.
- Threats: a negative action that may harm a system.
- Vulnerabilities: a weakness that allows a threat to cause harm.
- Impact: the severity of the damage, sometimes expressed in dollars.
- TCO Total Cost of Ownership
- ROI Return on Investment

Logistics and Supplies

- Food and drinking water
- Blankets and sleeping cots
- Sanitation (toilets, showers, etc.)
- Tools
- Spare parts
- Waste bins
- Information
- Communications
- Fire protection (extinguishers, sprinklers, smoke alarms, fire alarms)

Business Resumption Planning

- Alternate work locations
- Alternate personnel
- Communications
 - Emergency, support of organizational processes
- Standby assets and equipment
- Access to procedures, organizational records

Restoration and Recovery

Repairs to facilities, equipment

Replacement equipment

Restoration of utilities

Resumption of organizational operations in primary business facilities

Improving System Resilience and Recovery

Off-site media storage

Assurance of data recovery

Server clusters

Improved availability
Geographic clusters:
members far apart

Data replication

Application, DMBS, OS, or Hardware

Maintains current data on multiple servers even in remote places

Training Staff

Everyday operations

Recovery procedures

Emergency procedures

Resumption procedures

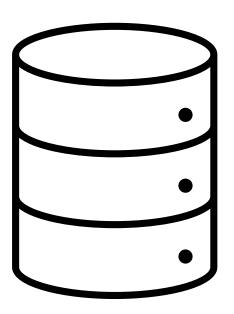
BCP/DRP Testing

Document Review/Checklist

Walkthrough/Tabletop

Simulation

Parallel


Cut-off/Full Interruption

Hot Sites, Warm Sites, Cold Sites

- Hot site- Fully configured sited ready to work at
- Cold Site -alternate location earmarked
- Warm site site that can be converted
- Reciprocal Agreement also called "Mutual Aid" is when two companies agree to help each other out in the case of an emergency.
- Hot spare fully configured hardware
- Cold spare duplicate hardware that can be configured

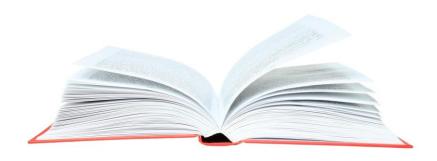
HSM

Hierarchical Storage Management (HSM).
 HSM provides continuous on-line backup
 by using optical or tape 'jukeboxes,' similar
 to WORMs. It appears as an infinite disk to
 the system, and can be configured to
 provide the closest version of an available
 real-time backup

Business Continuity Terms

Contingency Plan – a document providing the procedures for recovering a major application or information system network in the event of an outage or disaster.

Crisis Communications Plan – A document that outlines the procedures for disseminating status reports to personnel and the public in the event of an outage or disaster.


Continuity of Operations Plan – A document describing the procedures and capabilities to sustain an organizations essential strategic functions at an alternate site for up to 30 days

Business Continuity Terms- Continued

Critical System – The hardware and software necessary to ensure the viability of a business unit or organization during an interruption in normal data processing support.

Cyber Incident Response Plan
– strategies to detect,
respond and limit the
consequences of cyber
incidents.

General Terms/Acronyms

- Continuity Planning Project Team (CPPT)
- Crisis Management Plan (CMP)
- Disaster Recovery Plan (DRP)
- Business Continuity Plan (BCP)
- Business Impact Assessment or analysis (BIA)
- MTTD (Maximum Tolerable Downtime)
- MTTR (mean time to recover or mean time to repair)
- MSMT Mean Scheduled Maintenance Time
- MTBCF Mean Time Between Critical Failure
- MTBDE Mean Time Between Downing Event
- MTBF Mean Time Between Failures
- MTBFA Mean Time Between False Alarms
- MTBM Mean Time Between Maintenance
- MTBMA Mean Time Between Maintenance Actions
- MTBPM Mean Time Between Preventative Maintenance
- MTBSA Mean Time Between System Aborts
- MTBR Mean Time Between Removal
- MTBUM Mean Time Between Unscheduled Maintenance