

Kerckhoffs's
Principle/Shannon’s Maxim

Kerckhoffs’ principle

and compromise of the system
should not inconvenience the
correspondents

* Auguste Kerckhoff's first
articulated this in the 1800s,
stating that the security of a cipher
depends only on the secrecy of the
key, not the secrecy of the
algorithm.

* Claude Shannon rephrased this,
stating, “One ought to design
systems under the assumption that
the enemy will ultimately gain full
familiarity with them.” This is
referred to as Shannon’s maxim
and states essentially the same
thing Kerckhoffs’s principle.

Information
Entropy

n

H(X)=—> p;log,p;
i=1

* |n information theory, entropy is the
amount of information in a given message.

* [tis sometimes described as the
number of bits required to communicate
information.

* Another way to describe information
entropy, used in many texts, is the
measure of uncertainty in a message.

Confusion and Diffusion

The concept of confusion, as relates to cryptography, was outlined in
Claude Shannon’s 1949 paper “Communication Theory of Secrecy
Systems.” In general, this concept attempts to make the relationship
between the statistical frequencies of the cipher text and the actual key
as complex as possible.

Diffusion literally means having changes to one character in the plain
text affect multiple characters in the cipher text.

Avalanche means that a small change yields large effects in the output,
like an avalanche. This is Horst Fiestel’s variation on Claude
Shannon’s concept of diffusion.

Claude Shannon

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

H amm i ng * The Hamming distance is the number of characters (or bits)
that are different between two strings. This can be expressed

DiStanCe and mathematically as
Weight

h(x,y)

* The concept of Hamming weight is closely related to
Hamming distance. It compares the string to a string of all 0’s.
Put more simply, it is how many 1’s are in the binary
representation of a message. Some sources call this the
population count or pop count.

Key Schedule

In addition to the cipher key, all block ciphers have a
second algorithm called a key schedule. The key
schedule derives a unique key from the cipher, called a
round key, for each round of the cipher.

Using a key schedule, each round uses a key that is
slightly different from the key used in the previous
round. Because both the sender (who encrypts the
message) and the receiver (who must decrypt the
message) are using the same cipher key as a starting
point and are using the same key schedule, they will
generate the same round keys.

Feistel
History

Feistel is used in DES, CAST-128,
Blowfish, Twofish, RC5, and others.

First seen in IBM’s Lucifer algorithm
(the precursor to DES).

Michael Luby and Charles Rackoff
analyzed the Feistel cipher
construction and proved that if the
round function is a cryptographically
secure pseudorandom function, then
three rounds is sufficient to make the
block cipher a pseudorandom
permutation, while four rounds is
sufficient to make it a “strong”
pseudorandom permutation.

THE FEISTEL
FUNCTION

This function is named after its inventor, the
German-born physicist and cryptographer
Horst Feistel.

At the heart of many block ciphersis a
Feistel function, which forms the basis for
most block ciphers. This makes it one of the
most influential developments in symmetric
block ciphers. Itis also known as a Feistel
Network or a Feistel cipher.

The Feistel
Function

Here is a general
overview of a basic
round of a Feistel
cipher:

plain text left

plain text right

w

function

round key

plain text left

plain text right

w

function

4 round key

plain text left

plain text right

Block of Plaintext

E S Left 2 Block Right "2 Block

Illustrated

Output from
Rourd
Functjon
Left and Right /
Blocks are ’
Swapped Left V2 for Right 14 for
next Round next Round

This process goes on for 16 rounds!!

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

Round Key

Unbalanced
Feistel

* Avariation of the Feistel network is
called an Unbalanced Feistel cipher.

* These ciphers use a modified
structure, where L, and R, are not of
equal lengths. This means that L, might
be 32 bits and R, could be 64 bits
(making a 96-bit block of text). This
variation is used in the Skipjack
algorithm.

3DES

* Eventually it became obvious that DES would no longer be

secure. The U.S. government began a contest seeking a replacement
cryptography algorithm. In the meantime, 3DES was created as an
interim solution. Essentially it does DES three times, with three
different keys.

* Triple DES uses a “key bundle” that comprises three DES keys:
K1, K2, and K3. Each key is standard 56-bit DES key. There were
some variations that would use the same key for K1 and K3, but
three separate keys is considered the most secure.

GOST

GOST is a DES-like algorithm developed by the
Soviets in the 1970s. It was classified but was
released to the public in 1994. It uses a 64-bit
block and a key of 256 bits. It is a 32-round
Feistel cipher.

GOST is an acronym for gosudarstvennyy
standart, which translates into English as
“state standard.”

The official designation is GOST 28147-89. It
was meant as an alternative to the U.S. DES
algorithm and has some similarities to DES.

Blowfish

Blowfish is a symmetric block cipher.

This algorithm was published in 1993 by Bruce
Schneier. This cryptography algorithm was
intended as a replacement for DES.

Like DES, itis a 16-round Feistel cipher working
on 64-bit blocks. However, unlike DES, it can
have varying key sizes ranging from 32 bits to
448 bits.

Early in the cipher, the cipher key is expanded.
Key expansion converts a key of at most 448 bits
into several sub key arrays totaling 4168 bytes.

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

Twofish

Twofish was one of the five finalists of the AES contest

It is related to the block cipher Blowfish, and Schneier was also
part of the team that worked on this algorithm.

Twofish is a Feistel cipher that uses a 128-bit block size and key
sizes of 128, 192, and 256 bits. It also has 16 rounds, like DES.

Like Blowfish, Twofish is not patented and is in the public
domain. It can be used without restrictions by anyone.

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

Electronic Codebook
(ECB)

The most basic encryption mode is the
electronic codebook (ECB) mode.

The message is divided into blocks and
each block is encrypted separately.

However, if you submit the same plain text
more than once, you always get the same
cipher text. This gives attackers a place to
begin analyzing the cipher to attempt to
derive the key.

-

#helection at the end -add
_Oob.select= 1
#er_ob.select=1
Mntext.scene.objects.active
Wi "Selected” + str(modifier i
#eirror_ob.select = ©
bpy.;ontext.sele(tedioh
gata.objects[one.name].sel

rint("please select exacthy ™

OPERATOR CLASSES - ==

ator): of D
cVPeS‘,Ope: o the T
B g X ®irTO" L girror X

‘ject .mir

rror x

Cipher-Block Chaining (CBC)

When using cipher-block chaining (CBC)
mode, each block of plain text is XOR’d with
the previous cipher text block before being
encrypted.

This means there is significantly more
randomness in the final cipher text.

This is much more secure than electronic
codebook mode and is the most common
mode.

Plain text block for
round i

l}{{]ﬁ

Cipher text
produced in round
i-1

|

Pseudo plain text

|

Round function

Propagating
Cipher-
Block
Chaining
(PCBC)

/

The propagating cipher-block chaining mode was
designed to cause small changes in the cipher text to
propagate indefinitely when decrypting and encrypting.

-
/
chaining.

.

This method is sometimes called plain text cipher-block

J
\

J

/

The PCBC mode is a variation on the CBC mode of
operation. It is important to keep in mind that the PCBC
mode of encryption has not been formally published as

a federal standard.

J

AES

-

AES can have three different key sizes: 128, 192, or 256 bits.

_
-

The three different implementations of AES are referred to as
AES 128, AES 192, and AES 256.

J
\

.
-
The block size is always 128 bit

_

J\

J

The original Rijndael cipher allowed for variable block and key
sizes in 32-bit increments. However, the U.S. government
uses these three key sizes with a 128-bit block as the
\standard for AES.

AES Steps

Key Expansion: Round keys are derived from the cipher key using
Rijndael’s key schedule

Initial Round: AddRoundKey—each byte of the state is combined
with the round key using a bitwise XOR

Rounds:

* 1. SubBytes—a nonlinear substitution step in which each byte
is replaced with another according to a lookup table.

* 2. ShiftRows—a transposition step in which each row of the
state is shifted cyclically a certain number of steps.

* 3. MixColumns—a mixing operation that operates on the
columns of the state, combining the four bytes in each
column.

* 4. AddRoundKey

Final Round (no MixColumns):
* 1. SubBytes

* 2. ShiftRows

* 3. AddRoundKey

S-Box (

the only one in AES)

(a) S-ox

0 | 2 3 4 3 & 7 % o A B - D E F

(1 a3 TC 77 B F2 6B aF C5 | 30 (11 7 2B FE | X | AB | 76
I |calsm |||l mlap| s |az]arlec|as| 2]
>lerlm ||| mloclaalas sl [oe]31]1s
sl sl |os|ealom |z | el 27]82]7s
s oo |m |xcliialie|ee|salao| 238 |pe|83] 293 2F | 22
s |saloi [[en| 2ol]se|6a|ce]BeE] 30 [an[ac]| =]|cF
6 |oo|EF |aa | la |ap| 3| as|as | m ||] s0|ac| o] as
T sl alsrleelom=]rmslecle|oalalwo|rE] s
) cp|oc| 3 |ec]lsElow a7 |ca|lar|xE]laD]|ss|s0]19]
G |60 | 81 | 4F |DC| 22 | 2a o0 | 88 | 46 | EE | B8 | 14 | DE | SE | 0B | DB
Alen |32 |3aloalas|oet2a]lsc|lcz|mlac]lea]loa |os |] m
B |er|cs |37l nsaeaolac |56 [re|Ea]6s [7a]AE] o8
cleal=m|2s|2E|ic|ae]Bs]cs|e=|op]|74]1F] 48 |BD| 86 |5
D |70 |3E [B5 |66 |48 |3 [e |oE |61 |35 57 [Bo| 8 |1 | 1n]sE
Elel [s | |e|pwlsElwuw|m|iE]lzr|em|ce|ls]| 2w |0oF
F B Al #O | O | BF | E& 42 el 41 0 20 (F B0 5 | BB 1

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

Stream Ciphers

* There are two types of stream ciphers: synchronous and self-synchronizing.

* Inasynchronous stream cipher (sometimes called a binary additive stream cipher),
the key is a stream of bits produced by some pseudo-random number generator. The
production of this key stream is completely independent of the plain text. The key stream
is XOR’d with the plain text to produce the cipher text. It is called a synchronous cipher
because the sender and receiver need to be in synch. If digits are added or removed from
the message during transmission (such as by an attacker), then that synchronization is
lost and needs to be restored.

» Self-synchronizing ciphers use parts of the current cipher text to compute the rest of
the key stream.

RC4

* RC4is awidely known and used stream cipher, perhaps the most
widely known. The RC stands for Ron’s Cipher or Rivest cipher, as it was
designed by Ron Rivest—a name that is very familiar in cryptography. He is
the Rin RSA, which we will explore in Chapter 10.

* RC4is widely used in many security situations, including WEP (Wired
Equivalent Privacy) and TLS (Transport Layer Security). The algorithm was
designed in 1987, and some experts have expressed concerns about its
security. There has been speculation that it can be broken, and many
people recommend no longer using it in TLS.

* However, it is the most widely known stream cipher and has a place in
the history and study of stream ciphers, similar to that of DES in block
ciphers.

RC4

* |t uses variable length key from 1 to 256 bytes, which
constitutes a state table that is used for subsequent generation
of pseudorandom bytes and then to generate a pseudorandom
string of bits which is XORed with the plaintext to produce the
ciphertext

FISH

This algorithm was published in 1993 by the German engineering
firm Siemens.

The FISH (Fibonacci Shrinking) cipher is a software-based stream
cipher that uses a Lagged Fibonacci generator (LFG) along with a
concept borrowed from the shrinking generator ciphers.

A Lagged Fibonacci generator is a pseudo-random number
generator based on the Fibonacci sequence.

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

PIKE

This algorithm was published in a paper by Ross Anderson as an
improvement on FISH.

h -

N

In that paper, Anderson showed that FISH was vulnerable to
known plain-text attacks.

PIKE is both faster and stronger than FISH. The name PIKE is not
an acronym, but rather a humorous play on the name FISH, a pike
being a type of fish.

Random numbers are a key part of
cryptography. When you generate a key for
a symmetric algorithm such as AES,
Blowfish, or GOST, you need that key to be
very random. Random numbers are also
required for initialization vectors used with
a variety of algorithms. A true totally
random number is not possible to
generate from a computer algorithm. It is
only possible to generate a truly random
number using other means including
hardware, but not by using a software
algorithm.

RANDOM NUMBER GENERATORS

What is normally used in cryptography are
algorithms called pseudo random number
generators. Pseudo-random number
generators (PRNGs) are algorithms that
can create long runs of nhumbers with good
random properties but eventually the
sequence repeats.

RANDOM
NUMBER
GENERATORS

There are three types of pseudo
random number generators
Table look-up generators. Literally a
table of pre-computed pseudo
random numbers is compiled, and
numbers are extracted from it as
needed.
Hardware generators. Some
hardware process, perhaps packet
loss on the network card, or
fluctuations from a chip, are used to
produce pseudo random numbers.
Algorithmic (software) generators.
This is the type most commonly used
in cryptography, and what we will
focus our attention on in this
chapters.

-I
-l

1 [
LI

C3

RANDOM NUMBER
GENERATORS

Any pseudo random number generator is going to generate a sequence of numbers. That sequence should have certain
properties:

Uncorrelated Sequences -This simply means that the sequences are not correlated. One cannot take a given stretch of
numbers (say 16 bits) and use that to predict subsequent bits. There, quite literally, is no correlation between one section
of output bits and another.

Long Period-Ideally the series of digits (usually bits) should never have any repeating pattern. However, the reality is that
there will eventually be some repetition. The distance (in digits or bits) between repetition’s is the period of that sequence
of numbers. The longer the period the better. Put another way: we accept that there will be repeated sequences, but those
should be as far apart as possible.

Uniformity- It is most often that pseudo random numbers are represented in binary format. There should be an equal
number of 1’s and 0’s, though not distributed in any discernable pattern. The sequence of random numbers should be
uniform, and unbiased. If you have significantly more (or significantly less) 1’s than 0’s then the output is biased.
Computational Indistinguishability —~Any subsection of numbers taken from the output of a given PRNG should not be
distinguishable from any other subset of numbers in polynomial time by any efficient procedure. The two sequences are
indistinguishable. That does not, however mean they are identical. It means there is no efficient way to determine specific
differences.

The third category is the one most often used in cryptography. It does not produce a truly random number but rather a pseudo
random number.

RANDOM NUMBER
GENERATORS

How do you know if a given pseudo random number generator is random enough? There are a variety of
tests that can be applied to the output of any algorithm to determine the degree of randomness.

The 1-D TEST is a frequency test. It is a rather simple test, and essentially used a first pass. In other
words, simply passing the 1-D test does not mean a given algorithm is suitable for cryptographic
purposes, However, if a given PRNG fails the 1-D test, there is no need for further testing. Imagine a
number line stretching from 0 to 1, with decimal points in between. Use the random number generator to
plot random points on this line. First divide the line into a number of "bins". These can be of any size, in
the graph below, there are four bins, each size .25

Now as random numbers (between 0 and 1.0) are generated, count how many fit into each bin.
Essentially if the bins fill evenly that is a good sign that you have random dispersal. If there is a significant
preference for one bin over another, then the PRNG is not sufficiently random. That PRNG has a bias and
further testing is not required to determine that it is not useful for cryptographic purposes.

RANDOM NUMBER
GENERATORS

A run is an uninterrupted sequence of identical bits.

The focus of this test is the total number of runs in the sequence.
A run of length k consists of exactly k identical bits and is bounded
before and after with a bit of the opposite value.

The purpose of the runs test is to determine whether the number
of runs of ones and zeros of various lengths is as expected for a
random sequence.

Determines whether the oscillation between such zeros and ones
is too fast or too slow.

fast oscillation occurs when there are a lot of changes, e.g.,
010101010 oscillates with every bit.

(input) E =
11001001000011111101101010100010001000010110100011000
01000110100110001001100011001100010100010111000
(input) n =100

(output) P-value = 0.500798

A p-value is a statistical test. A small p-value (typically < 0.05)
indicates strong evidence against the null hypothesis, so you
reject the null hypothesis. A large p-value (> 0.05) indicates weak
evidence against the null hypothesis, so you fail to reject the null
hypothesis. You can use CryptTool to apply the Runs test to a
sequence of numbers

RANDOM NUMBER
GENERATORS

* The poker test for PRNG's is based on the frequency in which
certain digits are repeated in a series of numbers. It is best
understood by considering a trivial example, a 3-digit number.

* In athree-digit number, there are only three possibilities.
The first possibility is that the individual digits can be all
different. The second possibility is that all three are different,
and the third is that there is one pair of digits with one digit that
does not match the other two.

* The tests actually assumes sequences of five numbers, as
there are five cards in a hand of poker. The actual five numbers
are analyzed to determine if any given sequence appears more
frequently than the other possible sequences.

RANDOM
NUMBER
GENERATORS

This is a very old algorithm. It was first described by a
Franciscan friar in the 13th century. It was then re-
introduced by John Von Neumann. It is a rather simple
method and easy to follow. The following is a step-by-step
description of the Mid square method:

Start with an initial seed (for example a 4-digit integer).
Square the number.
Take the middle 4 digits.

This value becomes the new seed. Divide the number by
10,000. This becomes the random number. Go step 2. The
following is a concrete example:

X, = 1234

X,: 12342 = 01522756 X, = 5227, R, = 0. 5227
Xy: 52272 = 27321529—x, = 3215, R, = 0.3215
X5: 32152 = 10336225—>x, = 3362, R, = 0.3362

The process is repeated indefinitely, generating a new
random number each time. The middle four bits of each
outputis the seed for the next iteration of the algorithm.

Three
Properties
of a Hash

* The algorithmis one
way; it is not
reversible.

* Variable-length
inputs produce
fixed-length outputs.
* Few or no collisions
should occur.

* One common use of hashing
M e Ssa ge algorithms is to ensure integrity of

messages. Messages can be altered in

I ntegrity transit, either intentionally or
accidentally. Hashing algorithms can
be used to detect that such an
alteration has occurred.

* Consider the example of an e-mail
message. If you put the body of the
message into a hashing algorithm,
let’s just say SHA-1, the outputis a
160-bit hash. That hash can be
appended at the end of the message.

https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3145376
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3145376

Password Storage

Cryptographic hashes also provide a level of security against
insider threats. It is common to store passwords in a
cryptographic hash. When the user logs into the system,
whatever password she tyf)es is hashed and then compared to
the hash in the database. If it matches exactly, the user is
logged into the system.

Given that the database stores a hash of the Eassword only,
and hashes are not reversible, even a network or database
administrator cannot retrieve the password from the
database. If someone attempted to type in the hash as a
password, the system will hash whatever input is input into
the password field, thus yielding a hash different from the one
stored in the database.

Storing passwords as a hash is widely used and strongly
recommended.

:asttom.com

Merkle-Damgard Function

A Merkle-Damgard function (also called a Merkle-Damgard
construction) is a method for building hash functions.

Merkle-Damgard functions form the basis for MD5, SHA1, SHA2, and
other hashing algorithms.

This function was first described in Ralph Merkle’s doctoral
dissertation in 1979.

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3145376
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3145376

One of the simplest checksum algorithms is the longitudinal parity
check.

It breaks data into segments (called words) with a fixed number of
bits. Then the algorithm computes the XOR of all of these words,
with the final result being a single word or checksum.

Here’s an example. Assume this text:
ChGCksum Euler was a genius
Convert that to binary:

01000101 01110101 01101100 01100101 01110010 00100000
01110111 01100001 01110011 00100000 01100001 00100000
01100111 01100101 01101110 01101001 01110101 01110011

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3145376
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3145376

The segments can be any size, but let’s assume a 2-byte (16-bit word). This text is

C h e c kS u m now divided into nine words (shown here separated with brackets).

[01000101 01110101] [01101100 01100101] [01110010 00100000] [01110111
01100001][01110011 00100000] [01100001 00100000] [01100111 01100101]

(c On tin ue d) [01101110 011010011 [01110101 01110011]

The next step is to XOR the first word with the second:

01000101 01110101 XOR 01101100 01100101 = 00101001 00010000

Then that result is XOR’d with the next word:

00101001 00010000 XOR 00100000 01110111 = 00001001 01100111
This process is continued with the result of the previous XOR then XOR’d with the
next word, until a result is achieved. That result is called the longitudinal parity

check.

This type of checksum (as well as others) works well for error detection.

MD5

This 128-bit hash is specified by RFC
1321.

\-

4)

J
\

>
Designed by Ron Rivestin 1991 to replace

and improve on the MD4 hash function,

\MDS produces a 128-bit hash, or digest.

>
As early as 1996, a flaw was found in
MD5, and by 2004 it was shown that MD5

was not collision-resistant.
_

J

SHA

The Secure Hash Algorithm is perhaps the most widely used hash algorithm today. There are
several versions of SHA, all of which are considered secure and collision-free.

SHA-1: This 160-bit hash function resembles the earlier MD5 algorithm. It was designed by the
National Security Agency (NSA) to be part of the Digital Signature Algorithm.

SHA-2: This is actually two similar hash functions, with different block sizes, known as SHA-
256 and SHA-512. They differ in the word size; SHA-256 uses 32-byte (256 bits) words, and
SHA-512 uses 64-byte (512 bits) words. There are also truncated versions of each
standardized, known as SHA-224 and SHA-384. These were also designed by the NSA.

SHA-3: This is the latest version of SHA. It was adopted in October 2012.

RIPEMD

* RACE Integrity Primitives Evaluation Message
Digestis a 160-bit hash algorithm developed by Hans
Dobbertin, Antoon Bosselaers, and Bart Preneel.

* There exist 128-, 256-, and 320-bit versions of this
algorithm, called RIPEMD-128, RIPEMD-256, and
RIPEMD-320, respectively.

* These all replace the original RIPEMD, which was
found to have collision issues. The larger bit sizes
make this far more secure that MD5 or RIPEMD.

https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3145376
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3145376

Tiger is designed using the
Merkle-Damgard construction
(sometimes called the Merkle-
Damgard).

Tiger produces a 192-bit digest.

This cryptographic hash was
invented by Ross Anderson and
Eli Biham and published in
1995.

GOST

4)

This hash algorithm was initially defined in the Russian national
standard GOST R 34.11-94 Information Technology -
Cryptographic Information Security — Hash Function. Itis based on
the GOST block cipher.

>~
Y

This hash algorithm produces a fixed-length output of 256 bits. The
input message is divided into chunks of 256-bit blocks.

~ '
4 . . . \
If a block is less than 256 bits, the message is padded by
appending as many Q’s to it as are required to bring the length of
the message up to 256 bits. The remaining bits are filled up with a
256-bit integer arithmetic sum of all previously hashed blocks, and

then a 256-bit integer representing the length of the original
message, in bits, is produced. /

-

Message Authentication Code
(MAC)

« AMAC function is used to add a secret key to protect integrity

Two types of MACs
Hash Message Authentication Code (HMAC)

Cipher Block Chaining Message Authentication Code(CBC-
MAC)

MAC

A Message Authentication Code (MAC), particularly the Hashing
Message Authentication Code (HMAC), is away to detect intentional
alterations in a message. A MAC is also often called a keyed
cryptographic hash function. That name should tell you how this
works.

Assume you are using MD5 to verify message integrity. To detect an
intercepting party intentionally altering a message, both the sender
and recipient must previously exchange a key of the appropriate size
(in this case, 128 bits). The sender will hash the message and then
XOR that hash with this key. The recipient will hash the received
message and XOR that computed hash with the key. Then the two
hashes are exchanged. Should an intercepting party simply
recompute the hash, he or she will not have the key to XOR it with
(and may not even be aware that it should be XOR’d) and thus the
hash the interceptor creates won’t match the hash the recipient
computes, and the interference will be detected.

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

MAC/HMAC

So, imagine you are using a SHA 1 hash (160 bits)
Your message is : this is my message
The SHA 1 Hash of that is: 589205d6d61d7c2f0c8d2f4b29d6db9aca3a91d7

But rather than simply send that as a hash, you first exclusively or it with
some random number you have decided upon:

Your SHA 1 value 589205d6d61d7c2f0c8d2f4b29d6db9aca3a91d7
The random number a8a0c642a3fb7e14e50c9a22706d3094db2fed53
The output f032c39475e6023be981b56959bbeb0e11157¢c84

MAC

* Oryouwant to use MAC with CBC. Your message is: this is my message

* You put that through any symmetric cipher using CBC, but only use the last
block. You send

* 69c4e0d86a7b0430d8cdb78070b4c55a

* Anyone without the key cannot create the same MAC and won’t be able to
perform a man in the middle attack.

* The output f032c39475e6023be981b56959bbeb0e11157¢c84

Rainbow Table

In 1980 Martin Hellman described a
cryptanalytic technique which
reduces the time of cryptanalysis by
using precalculated data stored in
memory. This technique was
improved by Rivest before 1982.
Basically, these types of password
crackers are working with pre-
calculated hashes of all passwords
available within a certain character
space, be that a-z or a-zA-z or a-zA-
Z0-9 etc, This is called a Rainbow
table. If you search a Rainbow table
for a given hash, whatever plaintext
you find, must be the text that was
input into the hashing algorithm to
produce that specific hash.

Rainbow Table

Clearly such a Rainbow table would get very large very fast.
Assume that the passwords must be limited to keyboard
characters. That leaves 52 letters (26 upper case and 26 lower
case), 10 digits, and roughly 10 symbols, or about 72 characters.
As you can imagine even a 6-character password has a very
large number of possible combinations. This means there is a
limit to how large a Rainbow table can be, and this is why longer
passwords are more secure that shorter passwords.

VERY Simple lllustration of Rainbow Tables

aaaa 74b87337454200d4d33f80c4663dc5e5 aaaaa 594f803b380a41396ed63dcal39503542

aaab 4c189b020ceb022e0ecc42482802e2b aaabb 120858a7016efcfab66967b834e9153¢c
8

aaac 3963a2bab5ac8eb1c6e214046003192 aaacc ee43671d755ac457cfe6e32d1894788e
5

aaal 39dc4f1eeb93e5adabddd872247e451f aaala 5bbac29650eb36b4de16885¢c190a9fa3

aaa2 0ad346c93c16e85e2cb117ff1fcfada3 aaa2a 597f0ce6d11567cc691b3f5df35594ch

aaad ee93fca7c150d9c548aff721c87d0986 aaada 4305dc076b3ba2bf8d55524cddf5a72d

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com o

Hash - Salt

Random bits added to further secure encryption or hashing. Most often encountered with hashing, to prevent Rainbow Table
attacks.

Essentially the salt is intermixed with the message that is to be hashed. Consider this example. You have a password that is
pass001

in binary that is

011100000110000101110011 01110011 00110000 00110000 00110001

A salt algorithm would insert bits periodically, lets assume for this example, we just duplicate the first 8 bits every fourth byte:
01110000011000010111001101110011 01110000 00110000 00110000 00110001 10111001 01110000

If you convert that to text, you will get

passp001p

|
1h
-
)
=
"

|

)
Al

-

\ ©

A8

“» =
BS
e
D ~S4
-

)

i’

Relatively Prime

 Two numbers x and y are relatively prime (co-prime) if they have no
common divisors other than 1. So, for example, the numbers 8 and 15 are co-
prime. The factors of 8 are 1, 2, and 4. The factors of 15 are 1, 3, and 5. Since
these two numbers (8 and 15) have no common factors other than 1, they are
relatively prime.

* The term for the integers that are smaller than n and have no common
factors with n (other than 1) is totative. For example, 8 is a totative of 15.

* Another term for Euler’s totient is the Euler phi function. [F][ﬂ}

Relatively Prime

* What if a given integer, n, is a prime number? How many totatives will it
have (that is, what is the totient of n)?

* Let’stake a prime number as an example, 7. Given that it is prime, we know
that none of the numbers smaller than 7 have any common factors with it. So
2,3,4,5, and 6 are all totatives of 7. And since 1 is a special case, itis also a
totative of 7, so we find there are six numbers that are totatives of 7.

* |tturns out that for any n that is prime, the Euler’s totientof nisn-1. So if
n =13, then the totient of nis 12.

M Od U lu S « Simply divide Aby N and

return the remainder
e So5 mod2=1
e So12mod5= 2

e Sometimes symbolized as %
asin5% 2= 1

s o e
i Wl ot O
> W 'j(‘d! X '>+ (é)-\ :;.) 1

Modulus

* One way to think about modulus arithmetic is to imagine doing any integer math you might normally
do but bound your answers by some number. A classic example is the clock. It has numbers 1 through 12,
so any arithmetic operation you do has to have an answer thatis 12 or less. If it is currently 4 o’clock and |
ask you to meet me in 10 hours, simple math would say | am asking you to meet me at 14 o’clock. But
that is not possible, because our clock is bounded by the number 12. The answer is simple: take your
answer and use the mod operator with a modulus of 12 and look at the remainder:

* 14mod12=2

* So, | am asking you to meet me at 2 o’clock (whether thatis a.m. or p.m. depends on the original 4
o’clock, but that is irrelevant to understanding the concepts of modular arithmetic). This is an example of
how you use modular arithmetic every day.

Congruence

Congruence in modulus operations is a very
important topic, and you will see it applied
frequently in modern cryptographic
algorithms.

Two numbers, a and b, are said to be
“congruent modulo n” if

(a mod n) = (b mod n) —= a = b(mod
n)

Step 1: Alice gets Bob’s public key -

Bob Step 3: Alice sends the message to Bob Alice
How
Public/Private Step 4: Bob decrypts Step 2: Alice encrypts
Key Encryption the message with his the message with Bob’s

Works private key @? public key @?
Even if Eve intercepts the
message, she does not
have Bob's private key
and cannot decrypt

the message

Eve

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

RSA

RSA may be the most widely used asymmetric algorithm.

This public key method was publicly described in 1977 by
Ron Rivest, Adi Shamir, and Leonard Adleman at MIT. The
letters RSA are the initials of their surnames.

huckEasttom.com

Generate two large random primes, p and g, of approximately
equal size such that their product n = pq is of the required bit
length (such as 2048 bits, 4096 bits, and so on):

Letn=pq
Letm=(p-1)(q-1)

HOW DOES
RSA
WORK?

Choose a small number e, co-prime to m. (Note: Two numbers
are co-prime if they have no common factors.)

Find d, such that de mod m =1

Publish e and n as the public key.

Keep d as the secret key.

RSA
(continued) g

Computes the
cipher text c = m¢
mod n.

e C=M®modn

Decrypt: o P = Cd mOd N

Put another way:
Uses his private key

(d,n) to compute m
=c9mod n.

RSA (continued)

Normally RSA would be done with very large integers. To make the math easy to follow, this example uses small
integers. (This example is from Wikipedia.)

1. Choose two distinct prime numbers, such as p = 61 and g = 53.

2. Compute n = pq, giving n = 61x53 = 3233.

3. Compute the totient of the product as ¢(n) = (p — 1)(g — 1) giving
®(3233) = (61 - 1)x(53 - 1) = 3120.

4. Choose any number 1 < e < 3120 that is co-prime to 3120. Choosing a prime number for e leaves us only to check
that e is not a divisor of 3120. Let e = 17.

5. Compute d, the modular multiplicative inverse of e, yielding d = 2753.

The public key is (n = 3233, e = 17). For a padded plain text message m, the encryption function is m'” (mod 3233).
The private key is (n = 3233, d = 2753). For an encrypted cipher text ¢, the decryption function is ¢275 (mod 3233).

Another RSA Example

1. Select primes: p=17 and q = 11.

. Compute n = pq =17x11 = 187.

. Compute g(n)=(p—1)(gq—1) = 16x10 = 160.
Select e: gcd(e,160) = 1; choose e = 7.

Determine d: de =1 mod 160 and d < 160.
Value is d = 23 since 23x7 =161 = 10%x160 + 1.

. Publish public key KU = {7,187}
7. Keep secret private key KR = {23,187}

b W N

(0]

RSA Continued

Now use the number 3 as the plain text. Remember e =7, d=23, and n =187
Ciphertext= Plaintext® mod n or
Ciphertext = 37 mod 187
Ciphertext =2187 mod 187
Ciphertext =130

Decrypt
Plaintext = Ciphertext ¢ mod n
Plaintext = 13022 mod 187
Plaintext = 4.1753905413413116367045797e+48 mod 187
Plaintext = 3

65

RSA why the public
key won’t decrypt

Remember from the last slide the
ciphertextis 130. Remember e =7, d=23,
and n =187. What if you tried the public key
(e,n) again, instead of the private key (d,n)?
Decrypt
Plaintext = Ciphertext © mod n
Plaintext = 1307 mod 187

Plaintext = 627485170000000 mod
187

Plaintext = 37

RSA Continued

Now take 3 as the plain text. Remember e =7, d=23, and n
=187. But what if even one of these numbers is wrong?
What if we did not pick an e that is coprime to m (160)? So,
let's pick e = 6 which is not coprime to 160

Ciphertext= Plaintext® mod n or

Ciphertext = 3* mod 187

Ciphertext =729 mod 187

Ciphertext=168
Decrypt

Plaintext = Ciphertext ¢ mod n

Plaintext = 16823 mod 187

Plaintext =

1.5209448956267486762854590239666e+51 mod

187

Plaintext = 93

See it does not work! Only by using numbers that
have the coprime relationships can this work

67

RSA
Continued

Also note RSA cannot encrypt
any plaintext larger than the
modulus. If you do, then the

public key will decrypt as well

as encrypt!

i

.o Diffie-Hellman is a cryptographic protocol that allows two parties that
lefle- have no prior knowledge of each other to establish a shared secret key

jointly over an insecure communication channel.

Hellman

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

D iffi e - H e llm a n The system has two parameters, called p and g. Parameter p

is a prime number, and parameter g (usually called a
generator) is an integer less than p, with the following property:

(c on tin ue d) for every number n between 1 and p — 1 inclusive, there is a

power k of g such that n = gk mod p.

1. Alice generates a random private value a and Bob
generates a random private value b. Both a and b are
drawn from the set of integers.

2. They derive their public values using parameters p and g
and their private values. Alice’s public value is g2 mod p
and Bob’s public value is g° mod p.

3. They exchange their public values.

4. Alice computes g = (g®)2 mod p, and Bob computes gb2
= (g?)° mod p.

5. Since g@ = gba = k, Alice and Bob now have a shared
secret key k.

i}

i

¥
[s

ElGamal

ge
—»{ Encrypt

| Adversary |

| |
Ciphertext
(g", my")

/AUTHENTICATION

Public key y+

[INTEGRITY |
| |

—

n: order of g

—

domain parameters:
g: a group generator

e me(g))

First described by Taher
Elgamal in 1984, EIGamal is
based on the Diffie-Hellman
key exchange algorithm. It is
used in some versions of
PGP.

The ElGamal algorithm has
three components: the key
generator, the encryption
algorithm, and the
decryption algorithm.

MQV

Like EIGamal, MQV (Menezes—Qu—
Vanstone) is a protocol for key
agreement that is based on Diffie—
Hellman.

It was first proposed by Menezes, Qu,
and Vanstone in 1995 and then
modified in 1998.

MQYV is incorporated in the public-key
standard IEEE P1363. HQMV is an
improved version.

Elliptic
Curves

X
|

Elliptic curves have been studied, apart from
cryptographic applications, for well over a
century.

As with other asymmetric algorithms, the
mathematics have been a part of number
theory and algebra, long before being
applied to cryptography.

Elliptic Curves
in
Cryptography

The use of elliptic curves for cryptographic
purposes was first described in 1985 by Victor
Miller (IBM) and Neil Koblitz (University of
Washington).

The security of elliptic curve cryptography
(ECC) is based on the fact that finding the
discrete logarithm of a random elliptic curve
element with respect to a publicly known base
pointis so difficult that it is impractical.

ECC Basics

An elliptic curve is the set of points that satisfy a specific mathematical
equation. The equation for an elliptic curve looks something like this:

y2=x3+Ax+B

And graphed like this:
ad
Lf\

Another way to describe an elliptic curve is this: it is the set of points that
satisfy an equation that has two variables in the second degree and one
variable in the third degree. The first thing you should notice from the

graph is the horizontal symmetry. Any point on the curve can be reflected
about the x-axis without changing the shape of the curve.

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

Digital
Signatures/Certificates

Digital Signature is usually the encryption of a
message or message digest with the sender's
private key. To verify the digital signature, the
recipient uses the sender's public key. Good
digital signature scheme provides:

e authentication
* integrity

* non-repudiation /

RSA algorithm can be used to produce and verify
digital signatures; another public-key signature
algorithm is DSA.

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

Digital Signhature Basics

Step 1: Bob signs the
message with his
private key -

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

. Step 2: Bob Sends the message with signature _ (i

Alice

Step 3: Alice verifies the
signature using Bob’s
publickey. (O =59

Good cryptography vs
Bad cryptography

It 1s important to realize that this particular area
of the computer industry is replete with frauds
and charlatans. One need only scan a search
engine for encryption to find a plethora of
advertisements for the latest and greatest
“unbreakable” encryption. If you are not
knowledgeable about encryption, how do you
separate legitimate encryption methods from
frauds?

"\
s+
““‘l“ s

ll“r

Jgstttete

y nt!

*\N

Good cryptography vs Bad
cryptography

There are many fraudulent cryptographic claims out there. You do not have to be a

cryptography expert to be able to avoid many of those fraudulent claims. Here are some
warning signs:

(1]
b

]
- w
- e
" w

Unbreakable: Anyone with experience in cryptography knows that there is no such
thing as an unbreakable code. There are codes that have not yet been broken. There are
codes that are very hard to break. But when someone claims that a method is
“completely unbreakable,” you should be suspicious.

Certified: Guess what? There is no recognized certification process for encryption
methods. Therefore, any “certification” a company claims is totally worthless.
Inexperienced people: A company is marketing a new encryption method. What
experience do the people working with it have? Does the cryptographer have a
background in math, encryption, or algorithms? If not, has he submitted his method to
experts in peer-reviewed journals? Or, is he at least willing to disclose how his method

works so that it can be fairly judged? Recall that PGP’s inventor had decades of
software engineering and encryption experience.

uckEasttom.com

Good cryptography vs
Bad cryptography

Auguste Kerckhoffs first articulated what has come
to be called Kerckhoffs’s principle in the 1800s. He
stated that the security of a cipher depends only on
the secrecy of the key, not on the secrecy of the
algorithm. Claude Shannon rephrased, this stating
that, “One ought to design systems under the
assumption that the enemy will ultimately gain full
familiarity with them.” This idea, referred to as
Shannon’s maxim, states essentially the same idea
as Kerckhoffs’s principle.

Top 10 Developer
Crypto Mistakes

* Hard-coded keys

* Improperly choosing an IV

* ECB mode of operation

* Wronguse or misuse of a cryptographic primitive for password storage

* MD5justwon’tdie. And SHA1 needs to go too!

* Passwords are not cryptographic keys

* Assuming encryption provides message integrity

* Asymmetric key sizes too small

* Insecurerandomness

* “Crypto soup” “use this term to mean a developer mixing a bunch of
cryptographic primitives together without a clear goal” use this term to
mean a developer mixing a bunch of cryptographic primitives together
without a clear goal

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

Top 10 Amateur Crypto
Mistakes

Improper or inadequate seeding of the random number
generator

Using the MD5 hashing algorithm

Storing SHA1(password) in the database (without salt)
Using DES

Using ECB mode

Using the same keystream to encrypt two different
documents

Not verifying the hostname of the SSL certificate

Not using certificate pinning

Not testing your SSL configuration

https://webencrypt.org/10cryptographymistakes/

https://webencrypt.org/10cryptographymistakes/

Quantum Computing — NIST

Post quantum cryptography standards working group.

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic
algorithms. Full details can be found in the Post-Quantum Cryptography Standardization page.

The submission deadline of November 30, 2017, has passed. Please see the Round 1 Submissions for the listing of complete and
proper submissions.

In recent years, there has been a substantial amount of research on quantum computers — machines that exploit quantum
mechanical phenomena to solve mathematical problems that are difficult or intractable for conventional computers. If
large-scale quantum computers are ever built, they will be able to break many of the public-key cryptosystems currently in
use. This would seriously compromise the confidentiality and integrity of digital communications on the Internet and
elsewhere. The goal of post-quantum cryptography (also called quantum-resistant cryptography) is to develop
cryptographic systems that are secure against both quantum and classical computers and can interoperate with existing
communications protocols and networks.

The question of when a large-scale quantum computer will be built is a complicated one. While in the past it was less clear
that large quantum computers are a physical possibility, many scientists now believe it to be merely a significant
engineering challenge. Some engineers even predict that within the next twenty or so years sufficiently large quantum
computers will be built to break essentially all public key schemes currently in use. Historically, it has taken almost two
decades to deploy our modern public key cryptography infrastructure. Therefore, regardless of whether we can estimate the
exact time of the arrival of the quantum computing era, we must begin now to prepare our information security systems to
be able to resist quantum computing.

Quantum Computing - NIST Round 3

Asymmetric Cryptography Alternate Public Key

e Classic McEliece = BIKE

* CRYSTALS-KYBER ®= FrodoKEM

e NTRU - HQC

" SABER = NTRU Prime
= SIKE

Digital Signature
* CRYSTALS-DILITHIUM

* FALCON Alternate Digital Signature
* Rainbow = GeMSS

" Picnic

= SPHINCS+

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

NIST Cryptography

NIST has selected algorithms to be standardized

CRYSTALS-KYBER for Public-key Encryption and Key-establishment Algorithms
CRYSTALS-DILITHIUM for Digital Signatures

FALCON for Digital Signatures

SPHINCS+ for Digital Signatures

For more on CRYSTALS-KYBER

https://pg-crystals.org/kyber/

Cybersecurity with Dr. Chuck Easttom www.ChuckEasttom.com

NIST Cryptography

FIPS 203 (ML-KEM or CRYSTALS-Kyber): This algorithm is designed for key establishment, ensuring that
sensitive information can be securely exchanged, even in the presence of quantum-capable adversaries. It
stands out for its efficiency in encryption and decryption, making it suitable for a wide range of applications,
from secure communications to cloud storage. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf

* FIPS 204 (ML-DSA or CRYSTALS-Dilithium): Targeting digital signatures, ML-DSA provides a robust
mechanism for verifying identities and ensuring the integrity of messages and documents. Its balance of speed
and security makes it a strong candidate for use in software updates, code signing, and any scenario where the
authenticity of information is critical. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf

* FIPS 205 (SLH-DSA or SPHINCS+): Also focused on digital signatures, SLH-DSA offers an alternative that
emphasizes resilience against attacks, including those leveraging quantum computing. While it is slightly less
efficient than ML-DSA, its stateless nature provides an additional layer of security, particularly for applications
requiring long-term integrity. https://nvilpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf

	Slide 1: Lesson 9: Introduction to Cryptography
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Feistel History
	Slide 8: The Feistel Function
	Slide 9: The Feistel Function
	Slide 10: DES Illustrated
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Electronic Codebook (ECB)
	Slide 17: Cipher-Block Chaining (CBC)
	Slide 18: Propagating Cipher-Block Chaining (PCBC)
	Slide 19
	Slide 20
	Slide 21: S-Box (the only one in AES)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Random Number Generators
	Slide 28: Random Number Generators
	Slide 29: Random Number Generators
	Slide 30: Random Number Generators
	Slide 31: Random Number Generators
	Slide 32: Random Number Generators
	Slide 33: Random Number Generators
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Message Authentication Code (MAC)
	Slide 46
	Slide 47: MAC/HMAC
	Slide 48: MAC
	Slide 49: Rainbow Table
	Slide 50: Rainbow Table
	Slide 51: VERY Simple Illustration of Rainbow Tables
	Slide 52: Hash - Salt
	Slide 53: Math needed for asymmetric cryptography
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: How Public/Private Key Encryption Works
	Slide 60: RSA
	Slide 61: How Does RSA Work?
	Slide 62: RSA (continued)
	Slide 63: RSA (continued)
	Slide 64: Another RSA Example
	Slide 65: RSA Continued
	Slide 66: RSA why the public key won’t decrypt
	Slide 67: RSA Continued
	Slide 68: RSA Continued
	Slide 69: Diffie-Hellman
	Slide 70: Diffie-Hellman (continued)
	Slide 71: ElGamal
	Slide 72: MQV
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Digital Signatures/Certificates
	Slide 77: Digital Signature Basics
	Slide 78: Good cryptography vs Bad cryptography
	Slide 79: Good cryptography vs Bad cryptography
	Slide 80: Good cryptography vs Bad cryptography
	Slide 81: Top 10 Developer Crypto Mistakes
	Slide 82: Top 10 Amateur Crypto Mistakes
	Slide 83: Quantum Computing – NIST
	Slide 84: Quantum Computing – NIST Round 3
	Slide 85
	Slide 86

