Repositories and Tools

Dr. Chuck Easttom

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Case 2

The PATRIOT is a surface to air missile system used
by the US Army. PATRIOT is an acronym for Phased
Array Tracking Radar to Intercept On Target. On
Feb 25, 1991, on Iraqi Scud missile hit a barracks in
Saudi Arabia killing 28 US soldiers. The
investigation revealed the PATRIOT failure was due
to a software error in the systems clock. The
missile battery had been in operation for 100
hours, by that time the systems internal clock had

drifted by 1/3 of a second. This led to a miss of 600
meters.

What is a
Repository? (Repo)

* A collection of all the files and the
* history of those files.
* which consist of all your commits.

* A place where all your hard work is
stored.

Version Control System

Version control is important when you're working on a software project
over time.

Many source and documentation files.

The files change during development.
You need to keep track of the different versions of each file, and possibly
roll back to an earlier version.

A version control system (VCS):

Records changes to your files over time.
You can recall specific versions later.

Version
Control
System

A VCS is critical for a multi-person project.

How do you keep developers on a team
from overwriting each other’s changes?

How do you roll back to an earlier version
of a file after deciding that the latest
changes were bogus?

Who has the latest and greatest version
of the source files?

Common terminologies

Repository (Repo): This is where your code lives. It’s a centralized storage space for all code files,
revision history, and more. Think of it as a bookshelf dedicated to a specific story. The shelf
doesn’t just hold the latest version of the story but all its drafts and changes too.

Commit: When you make changes to your code and are satisfied, you “commit” those
changes, effectively taking a snapshot of your code at that moment. It’s like finishing a chapter
in your story and taking a photo of it.

Branch: Sometimes, developers need to create a separate environment from the main project
to work on new features or experiments without affecting the main project. Imagine creating a
spin-off from the main story. You branch out to write a side story without changing the main
plotline. Once you’re satisfied with the spin-off, you can integrate it back into the main story.

Merge: Once the work on a branch is complete and tested, it can be combined (or “merged”)
back into the main project. Once the side story (branch) has been finished and polished, you
can weave it back into the main story.

Sehgal, Vandana Verma. Implementing DevSecOps Practices: Understand application security testing and secure coding by
integrating SAST and DAST . Packt Publishing.

The Lock-
Modify-
Unlock
Solution

Many version control
systems use a lock-
modify-unlock model
to address this
problem

Figure 2.3. The Lock-Modify-Unlock Solution

Harry “locks” file A, then copies

While Harry edits, Jaly's fock
attempt faifs

Repository

A

I

| The Lock-Modify-Unlock Solution l

it for editing
Repository
A
10K
[Read
Fl \
Harry Sally
Harry writes his version, then
releases his lock
Repository
E
White 11
LINLOCK
: N
Harry Sally

G

Harry Sally

Now Sally can lock, read, and
eail the latest version

Repository
"
Read
LK l
]]
Harry Sally

The
problem
of lock-
modify-
unlock
model

Locking may cause administrative problems.
Sometimes Harry will lock a file and then forget about it.
Meanwhile, because Sally is still waiting to edit the file,
her hands are tied. And then Harry goes on vacation.
Now Sally has to get an administrator to release Harry's
lock. The situation ends up causing a lot of unnecessary
delay and wasted time.

Locking may cause unnecessary serialization. What
if Harry is editing the beginning of a text file, and Sally
simply wants to edit the end of the same file? These
changes don't overlap at all. They could easily edit the
file simultaneously, and no great harm would come,
assuming the changes were properly merged together.
There's no need for them to take turns in this situation.

Locking may create a false sense of security. Pretend
that Harry locks and edits file A, while Sally
simultaneously locks and edits file B. But suppose that A
and B depend on one another, and the changes made to
each are semantically incompatible. Suddenly A and B
don't work together anymore. The locking system was
powerless to prevent the problem - yet it somehow
provided a sense of false security. It's easy for Harry and
Sally to imagine that by locking files, each is beginning a
safe, insulated task, and thus inhibits them from
discussing their incompatible changes early on.

The Copy-
Modify-
Merxge

solution

Subversion, CVS, and other version control
systems use a copy-modify-merge model as an
alternative to locking. In this model, each user's
client reads the repository and creates a personal
working copy of the file or project. Users then
work in parallel, modifying their private copies.
Finally, the private copies are merged together
into a new, final version. The version control
system often assists with the merging, but
ultimately a human being is responsible for
making it happen correctly.

But what if Sally's changes do overlap with Harry's changes? What then?

This situation is called a conflict, and it's usually not much of a problem.
When Harry asks his client to merge the latest repository changes into his
working copy, his copy of file A is somehow flagged as being in a state of
conflict: he'll be able to see both sets of conflicting changes, and manually
choose between them. Note that software can't automatically resolve conflicts;
only humans are capable of understanding and making the necessary
intelligent choices. Once Harry has manually resolved the overlapping
changes (perhaps by discussing the conflict with Sally!), he can safely save
the merged file back to the repository.

The
advantage
of copy-
modify-
merge

model

The copy-modify-merge model may sound a bit
chaotic, but in practice, it runs extremely smoothly.
Users can work in parallel, never waiting for one
another. When they work on the same files, it
turns out that most of their concurrent changes
don't overlap at all; conflicts are infrequent. And
the amount of time it takes to resolve conflicts is
far less than the time lost by a locking system.

11

Branching
/ Tagging

One of the features of version control
systems is the ability to isolate changes
onto a separate line of development. This
line is known as a branch.

12

Where branches are used to
maintain separate lines of

will want to merge the changes
made on one branch back into
the trunk, or vice versa.

development, at some stage you

J

It is important to understand
how branching and merging
works in Subversion before you
start using it, as it can become
quite complex.

13

What is Git?

* A tool which allows you to manage and
track changes to files over time.

* When you create a repository you will
see a .qgit directory.

* It keeps track of a file’s history — its
tracks changes and who made those
changes.

 Each version of a file is called a
commit.

Git

Originally developed by Linus Torvalds.

Creator of Linux.

“I’m an egotistical bastard, and | name all my projects after myself. First
Linux, now git.”

git = British term for a silly or worthless person
“Global Information Tracker”

Extremely popular in industry and academia.
For example, used by NASA.

15

Git: File Differences vs.
Snapshots

Checkins over time -

DifferenFes - (vesanz) (versons) (versons) (version's)

(Subversion) D _:@
c: O—@®

Checkins over time -

Snaps.,hots (vmlunl) (\I’er:lnnz) (U‘mlu 3) (\r'miu 4) (vnms)
(Git)

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Git: Local
0perations Each developer has a

complete local copy of the repository
on his or her laptop or workstation.

Local operations
add
commit
checkin
check out
status
differences

etc.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Git: Remote Do remote operations only when necessary
to the master repository on the server.
Operations

Clone the master repository into a local
repository.

Push (and merge) a local repository
up to the master repository.

Pull (and merge) files from the master
repository
down to a local repository.

Git can work peer-to-peer
without a master repository.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Local and Remote

Repositories

Master Repo

REMOTE

pu% Nush

Susan’s
local repo

Fred’s
local repo

add, commit, etc.

add, commit, etc.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

LOCAL

Git: Three File States

Local Operations

working staging
directory area

A file can be in one of three states:

e modified
e staged
e committed

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Git: Three File States

Local Operations

working staging
directory area

The staging area is also
known as the “index”.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

The hidden Git directory .git is the
local project repository.

The working directory
is where you check out
a version of the project for you to work on.

The staging area is a file that keeps track of what will
go into your next commit.

What is
GitHub?

* A remote repository in
which you can host your
local repository.

* And a place to
collaborate with others.

© GitHub

Remaote repasitory on GitHub

£
%
E,
ina
S

Local clone Lecal clone Local clone

GitHub

GitHub is a popular
website for hosting
remote Git repositories.
https://github.com/ The
free service

hosts public
repositories.

G google @) NewTab @ New Tab @ New Tab

[CIR™

nnnnnnnn

08

ps//github.co

m

Home

<> Leam Java stream conwersion

Feed

=

& TapXWorld/ChinaTaxtbook

RIS, AFPOFEE.

public-apis/public-apis

A collective list of free APls

o7 2

8 -

https://github.com/

GitHub:
Create
Personal
Account

Go to http://git-scm.com/downloads

Download and install Git on your local
machine.

Go to https://github.com/

Create a personal account with a
recognizable user name such as johndoe
or jdoe.

Set up SSH keys to establish a secure
connection with GitHub.

See
https://help.github.com/articles/generatin
g-ssh-keys

24

http://git-scm.com/downloads
https://github.com/
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys

GitHub: Create Team
Repository

Obtain the GitHub username
of each team member.

Add team members as contributors
to the team repository.

* Click Settings in the right side panel.
e Click Collaborators in the left Options panel.
* Add collaborators using each team member’s GitHub username.

25

GitHub:
Create
Local
Repository

Each team member creates local repository
that is a clone of the master repository.

Log into your personal GitHub account.

Search for your team’s master repository
by name
in the search box at the top.

Click on the link to the team repository.

Obtain the URL to the team repository.

On the team repository page, look for
HTTPS clone URL in the right-side panel.

Put the URL on the clipboard.

GitLab

* Access site with
username and
password

e Password must be
changed on 1st login

Create or import your first project

Projects help you organize your work. They contain your file
repository, issues, merge requests, and so much more.

Create Import

Group hame

‘ chuckeasttom-group ‘

Project name

‘ chuckeasttom-project ‘

Select a template (optional)
Get started with one of our popular project templates. (?)

Select v

Your project will be created at:

https://gitlab.com/chuckeasttom-group/
chuckeasttom-project

You can always change your URL later

GitLab
Console

* Console show activity
on repo, projects,
settings

-

D + «

L GrOH
I

;OON

O 13} &

Q Search or go to...

Project
C chuckeasttom-project
IQ Learn GitLab 8%
* Pinned v
Issues 0
Merge requests 0
88 Manage >
Plan >
<f> Code >
& Build >
@ Secure >
) Deploy >
@ Operate >
Ml MAaRitar

chuckeasttom-group / chuckeasttom-project / Learn GitLab

Learn GitLab

Follow these steps to get familiar with the GitLab workflow.

Get started

3

Set up your code

Use the built-in editor, WebIDE, or upload code using
your preferred method.

@ Create a repository

Add code

Next steps

Configure your project

Complete these tasks first so you can enjoy GitLab's
features to their fullest:

Create projects

Actions View files

from the Add files

Console

View commit messages

Handle pull request for merge

SVN
Version
Control

svhn is a tool for version control of files

Keeps a repository of what is under control at a
central location

Allows users to make local (aka working) copies

of the repository on their machine or file system

Saves each version a user commits

Administrator sets up main repository.

Repository

J

[|
Wirite Read Read

OO0

Client Client Client

The Repository

Subversion is a centralized system for
sharing information. At its core is a
repository, which is a central store of data.

Getting
and

Updating

Checkout a repository. A local/working copy of a
repository is created on a machine or file system.
This links a given folder to the address of the
repository.

svn checkout address folder

Update a local/working copy. The contents of the
repository are copied to the local folder. This
updates the local copy.

svn update

Committing Changes

Commit a change. Copy a local change to repository. This commits a
change to the repository. This is a new version of the item under version
control. Itis numbered and the old version is saved. Need to commit:

Modified files
Added or removed files or folders

svn commit file —m “Commit note”

Other
Essential

Commands

svn add —add a file. A commit must be done
after the add to commit it to the repository.

svn delete — delete afile, followed by a
commit.

svn log — getall the commit messages. Use
this to roll back to an earlier version.

Rules to Live By (svn)

Always update before Always commit after Commit often — after a
you start working changes major (or minor) change:
*Add a method
*Fix a bug

eChange a method

Mercurial

Mercurial is a command line tool
released in April 2005. Every user has
a full copy of the repository, including
history. It is designed to be user
friendly/simple to use. Commands
follow a regular pattern (hg add, hg
commit, hg push, etc.). There is
TortoiseHg GUI tool for easier
visualization and management. Works
on Windows, macOS, Linux.

https://www.mercurial-scm.org/

mercurial

TES (Team Foundation
Server) / Azure DevOps
Server

In 2018, Microsoft rebranded TFS to Azure DevOps Server. Supports both Git (distributed) and TFVC (Team
Foundation Version Control — centralized). It also includes Agile tools for sprint planning, tracking work items, bugs,
etc.

DevOps Server express is a free version for individuals and small teams. Use Azure DevOps Server Express as
individual developers or teams of five or less, at no cost. Easily install on your personal desktop or laptop without
needing a dedicated server.

https://azure.microsoft.com/en-us/products/devops/server

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Fossil

Fossil is a distributed version control system that in d-
In web interface, and project management tools — las
created to support the SQLite project and is known 1d

self-contained architecture. Can be used with multi

https://fossil-scm.org
Ny Ny Ny

& " " T 2 Ny M) A

Linux x64 Mac ARM Mac x64 RaspberryPi Source Tarball Windows32 Windows64 WindowsARM
3.76 MB 417 MB 3.80 MB 3.60 MB 7.17 MB 3.45 MB 3.88 MB 3.70 MB

SCM
(software
configuration

management)

Centralised SCM

A centralised SCM stores all of its metadata in a
single authoritative (or "master") database that is
not replicated (except possibly for backup
purposes). CVS (and RCS and SCCS) follows this
model, as does Subversion.

39

http://mercurial.selenic.com/wiki/SCM
http://mercurial.selenic.com/wiki/RCS
http://mercurial.selenic.com/wiki/SCCS
http://mercurial.selenic.com/wiki/Subversion

Distributed
SCM

A distributed SCM tool (abbreviated:
a DSCM tool) is designed to support a
model in which each repository is
loosely coupled to many others. Each
repository contains a complete set of
metadata describing one or more
projects. These repositories may be
located almost anywhere. Individual
developers only need access to their
own repositories, not to a central one,
in order to commit changes.

Distributed SCMs provide
mechanisms for propagating changes
between repositories.

Distributed SCMs are in contrast to
centralised SCMs. Mercurial is a
DSCM.

40

Software Composition Analysis (SCA) is a process and set of tools designed to
identify, manage, and secure open-source components used in a software
application. In modern development, where applications are often composed
of 60—90% open-source code, SCA plays a crucial role in ensuring software
quality and reducing security risks.

“SCA is like a dedicated quality assurance team that covers security and
compliance for your software’s ingredients. It ensures you’re building your
software with the most up-to-date, safest, and compliant components
available. This not only ensures a better end product but also saves you from
potential headaches, be they security breaches or legal battles, down the
road.”

- Sehgal, Vandana Verma. Implementing DevSecOps Practices: Understand application
security testing and secure coding by integrating SAST and DAST (pp. 201-202). Packt
Publishing. Kindle Edition.

SCA Process

Codebase Scanning:

* SCA tools scan source code, binaries, and package manifests (e.g., package.json,
pom.xml, requirements.txt).

Fingerprinting:

 Components are hashed or fingerprinted and compared to large databases of
known libraries.

Correlation:
* |dentifies associated metadata: version, license, known CVEs.
Reporting & Remediation:
* Tools generate reports, prioritize issues, and often suggest fixed versions.

e Similarly, the SCA tool doesn’t just identify problems. It provides
recommendations, such as updating a component to a safer version or replacing it
with a more secure alternative.

Continuous monitoring:

 The team doesn’t just check ingredients once. They continuously monitor supply
chain news and updates. SCA tools also offer continuous monitoring, ensuring that
if a vulnerability is discovered in the future in a component you’re using, you're
notified immediately.

Sehgal, Vandana Verma. Implementing DevSecOps Practices: Understand application security testing and secure coding by integrating
SAST and DAST (p. 204). Packt Publishing. Kindle Edition.

	Slide 1: Repositories and Tools
	Slide 2: Case 2
	Slide 3: What is a Repository? (Repo)
	Slide 4: Version Control System
	Slide 5: Version Control System
	Slide 6: Common terminologies
	Slide 7: The Lock-Modify-Unlock Solution
	Slide 8: The problem of lock-modify-unlock model
	Slide 9: The Copy-Modify-Merge solution
	Slide 10: Conflicts
	Slide 11: The advantage of copy-modify-merge model
	Slide 12: Branching / Tagging
	Slide 13: Merging
	Slide 14: What is Git?
	Slide 15: Git
	Slide 16: Git: File Differences vs. Snapshots
	Slide 17: Git: Local Operations
	Slide 18: Git: Remote Operations
	Slide 19: Local and Remote Repositories
	Slide 20: Git: Three File States
	Slide 21: Git: Three File States
	Slide 22: What is GitHub?
	Slide 23: GitHub
	Slide 24: GitHub: Create Personal Account
	Slide 25: GitHub: Create Team Repository
	Slide 26: GitHub: Create Local Repository
	Slide 27: GitLab
	Slide 28: GitLab Console
	Slide 29: Actions from the Console
	Slide 30: SVN Version Control
	Slide 31: The Repository
	Slide 32: Getting and Updating
	Slide 33: Committing Changes
	Slide 34: Other Essential Commands
	Slide 35: Rules to Live By (svn)
	Slide 36: Mercurial
	Slide 37: TFS (Team Foundation Server) / Azure DevOps Server
	Slide 38: Fossil
	Slide 39: SCM (software configuration management)
	Slide 40: Distributed SCM
	Slide 41: SCA
	Slide 42: SCA Process

