Secure Coding

Gispiay:block;positiontabso)

o &

," s S
a;d;up‘ay:inline-blnch ; f ¢

ay:tl%k:liﬂt-!t
! OC k .

Yie:none ,
height 29
: J.splay:b‘

1«40 .

Case 6

This system was developed to handle case files for the
FBI. It was eventually abandoned while still in the
development stage, after costing 170 million dollars. It
was considered so poorly designed and inadequate as
to be completely unusable in real world conditions. It
failed even the most basic systems and failed to meet
basic requirements. A detailed report regarding the
project's failure listed several problems including:

1. Repeated changes to specifications.
2. Poor architectural decisions.
3. Scope creep.

4. Managers of the project with little or no computer
science training.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Software Product
Defects

'

I"OI"_md .use
w‘l"Ol‘_md .us

“l‘l‘or‘_.)d «US:

€_Yy = False
€_Z = True

Mselection at the end -add Software Design Defects

S _ob.select= 1
der_ob.select-1 Designing software with incomplete or erroneous
ntext.scene.objects.actiw

BE SR cted” + str(uodifleRfgy decision-making criteria

#eirror_ob.select = 0

L | ot i Failing to program as designed
grint("please select exacthf§ Failure to validate data
 OPERATOR CLASSES -~ Data Defects
Incomplete data used by automated decision-

making applications.

e Operatgril:le selectell &

type

irror = pror_X

. ‘jzc: mirror_mirrot=
- "

' —ly) o
js not -

i E1ve,‘?'l’j <)

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

DoD DevSecOps Testing

Continuous integration executes unit tests, such as Static and Dynamic Application
Security Test (SAST), verify the integrity of the work in the broader context of the
artifact or application. The Cl assembly line is solely responsible at this point for
guiding the subsystem, including dependency tracking, regression tests, code
standards compliance, and pulling dependencies

from the local artifact repository, as necessary. When the Cl completes, the artifact is
automatically promoted to the test environment.

DoD Enterprise DevSecOps Fundamentals Version 2.0

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

DoD DevSecOps Testing

Once the code and artifact(s) reach the integration environment, the continuous
deployment (CD) assembly line is triggered. More tests and security scans are
performed in this environment, including operational and performance tests, user
acceptance test, additional security compliance scans, etc. Once all of these tests
complete without issue, the CD assembly line releases and delivers the final product
package to the released artifact repository.

Released is never equivalent to Deployed! This is a source of confusion for many.
A released artifact is available for deployment. Deployment may or may not occur
instantly. A laptop that is powered off when a security patch is pushed into production
will not immediately receive the artifact. Larger updates or out-of-cycle refreshes like
anti-virus definition refreshes often require the user to initiate. The deployment occurs
later. While this is a trivialized example, it effectively illustrates that released is never
equivalent to deployed.

DoD Enterprise DevSecOps Fundamentals Version 2.0

Reasons for Software
Defects

» |IT improperly interprets requirements

» Users specify the wrong requirements

* Requirements are incorrectly recorded

» Design specifications are incorrect

» Errors in program coding

« Data entry errors

« Testing errors

» Tests falsely detect an error

» The corrected condition causes another defect

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

CERT Security Coding Standards

E Rule 00. Input Validation and Data Sanitization (IDS)
E Rule 01. Declarations and Initialization (DCL)
B Rule 02. Expressions (EXP)

B Rule 03. Numeric Types and Operations (NUM)
E Rule 04. Characters and 5trings (5TR)

E Rule 05. Object Orientation (OBJ)

B Rule 06. Methods (MET)

E Rule O7. Exceptional Behavior (ERR)

E Rule 08. Visibility and Atomicity (VMNA)

B Rule 09. Locking (LCK)

E Rule 10. Thread APls (THI)

E Rule 11. Thread Pools (TPS)

E Rule 12. Thread-5afety Miscellaneous (T5M)
B Rule 13. Input Output (FIO)

E Rule 14, Serialization (SER)

E Rule 15. Platform Security (SEC)

E Rule 16, Runtime Environment (ENV)

E Rule 17, Java Mative Interface (JNI)

E Rule 49, Miscellaneous (MSC)

& Rule 50. Android (DRD)

https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Cod
ing+Standard+for+Java

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java

CERT Security Coding Recommendations

B Rec
B Rec
B Rec
B Rec
B Rec
B Rec
B Rec
B Rec
B Rec

B Rec 49

00,
01,
02,
03,
04,
05.
0é.
07.
13.

B Rec. 15.
B Rec. 18.

Input Validation and Data Sanitization (IDS)
Declarations and Initialization (DCL)
Expressions (EXP)

Mumeric Types and Operations (NUM)
Characters and 5trings (5TR)

Object Orientation (OBJ)

Methods (MET)

Exceptional Behavior (ERR)

Input Qutput (FIO)

Platform Security (SEC)

Concurrency (CON)

Miscellaneous (MSC)

https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java

UDIs and CDls

Unconstrained Data Items (UDIs)
Unfiltered User Input
May even be from an attacker
Constrained Data Items (CDIs)
Data that has been verified and is now guaranteed to be
valid
Data that is "safe"

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Secure coding

Z.

SECURE MURPHY’S DEFENSIVE
CODING LAW

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

General guidelines for software
Development

Filter input

Stored
Procedures

Error Handling

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Error
Handling
Rules

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Utilize exception classes

Error code and
meaningful messages

Handle errors locally, when
and where they occur

Defensive Coding

Always be wary of input (regardless of its
source)

Plan for success
Stop errors before they happen (data validation)

Hard to have too much exception handling
Develop clean code

Test early and test often

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

SANS top 25 software vulnerabilities

Rank ID

1 CWE-/787
2 CWE-79
3 CWE-89
4 CWE-416
5 CWE-78
6 CWE-20
7 CWE-125
8 CWE-22
9 CWE-352
10 CWE-434
11 CWE-862
12 CWE-476
13 CWE-287
14 CWE-190
15 CWE-502
16 CWE-77
17 CWE-119
18 CWE-798
19 CWE-918
20 CWE-306
21 CWE-362
22 CWE-269
23 CWE-94
24 CWE-863
25 CWE-276

Name
Out-of-bounds Write
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)
Use After Free

Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
Improper Input Validation

Out-of-bounds Read

Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
Cross-Site Request Forgery (CSRF)

Unrestricted Upload of File with Dangerous Type

Missing Authorization

NULL Pointer Dereference

Improper Authentication

Integer Overflow or Wraparound

Deserialization of Untrusted Data

Improper Neutralization of Special Elements used in a Command (‘Command Injection’)
Improper Restriction of Operations within the Bounds of a Memory Buffer

Use of Hard-coded Credentials

Server-Side Request Forgery (SSRF)

Missing Authentication for Critical Function

Concurrent Execution using Shared Resource with Improper Synchronization (‘Race Condition')
Improper Privilege Management

Improper Control of Generation of Code ('Code Injection’)

Incorrect Authorization

Incorrect Default Permissions

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/862.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/269.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/276.html

Checklist Sections

Data Validation
Authentication and Password
Management

Authorization and Access
Management

Session Management
Sensitive Information Storage
or Transmission

System Configuration
Management

General Coding Practices
Database Security

File Management

Memory Management

15

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Object reuse

Use of a resource belonging to another
process, including:
Memory, databases, file systems,
temporary
files, and paging space
Object reuse countermeasures
Application isolation
Server virtualization
Developer training

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

== Covert Channels

m Lack of Parameter Checking

Application
Security Issues = Input

== Backdoor

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

B Rule 00. Input Validation and Data Sanitization (IDS)

B Rule 01. Declarations and Initialization (DCL)

The CERT Oracle Secure B Rule 02. Expressions (EXP)

Coding Standard for Java B Rule 03. Numeric Types and Operations (NUM)

B Rule 04. Characters and Strings (STR)
B Rule 05. Object Orientation (OBJ)

B Rule 06. Methods (MET)

B Rule 07. Exceptional Behavior (ERR)
B Rule 08. Visibility and Atomicity (VNA)
B Rule 09. Locking (LCK)

B Rule 10. Thread APIs (THI)

B Rule 11. Thread Pools (TPS)

B Rule 12. Thread-Safety Miscellaneous (TSM)
B Rule 13. Input Output (FIO)

B Rule 14. Serialization (SER)

B Rule 15. Platform Security (SEC)

B Rule 16. Runtime Environment (ENV)
B Rule 17. Java Native Interface (JNI)

B Rule 49. Miscellaneous (MSC)

B Rule 50. Android (DRD)

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

The CERT Top 10 Secure Coding Practices

Top 10 Secure Coding Practices

1. Validate input. Validate input from all untrusted data sources. Proper input validation can eliminate the vast majority of software vulnerabilities. Be suspicious of most external
data sources, including command line arguments, network interfaces, environmental variables, and user controlled files [Seacord 05].

2. Heed compiler warnings. Compile code using the highest warning level available for your compiler and eliminate warnings by modifying the code [C MSCO00-A, C++ MSCO00-A].
Use static and dynamic analysis tools to detect and eliminate additional security flaws.

3. Architect and design for security policies. Create a software architecture and design your software to implement and enforce security policies. For example, if your system
requires different privileges at different times, consider dividing the system into distinct intercommunicating subsystems, each with an appropriate privilege set.

4. Keep it simple. Keep the design as simple and small as possible [Saltzer 74, Saltzer 75]. Complex designs increase the likelihood that errors will be made in their
implementation, configuration, and use. Additionally, the effort required to achieve an appropriate level of assurance increases dramatically as security mechanisms become
more complex.

5. Default deny. Base access decisions on permission rather than exclusion. This means that, by default, access is denied and the protection scheme identifies conditions under
which access is permitted [Saltzer 74, Saltzer 75].

6. Adhere to the principle of least privilege. Every process should execute with the the least set of privileges necessary to complete the job. Any elevated permission should be
held for a minimum time. This approach reduces the opportunities an attacker has to execute arbitrary code with elevated privileges [Saltzer 74, Saltzer 75].

7. Sanitize data sent to other systems. Sanitize all data passed to complex subsystems [C STRO2-A] such as command shells, relational databases, and commercial off-the-
shelf (COTS) components. Attackers may be able to invoke unused functionality in these components through the use of SQL, command, or other injection attacks. This is not
necessarily an input validation problem because the complex subsystem being invoked does not understand the context in which the call is made. Because the calling process
understands the context, it is responsible for sanitizing the data before invoking the subsystem.

8. Practice defense in depth. Manage risk with multiple defensive strategies, so that if one layer of defense turns out to be inadequate, another layer of defense can prevent a
security flaw from becoming an exploitable vulnerability and/or limit the consequences of a successful exploit. For example, combining secure programming techniques with
secure runtime environments should reduce the likelihood that vulnerabilities remaining in the code at deployment time can be exploited in the operational environment [Seacord
03].

9. Use effective quality assurance techniques. Good quality assurance technigues can be effective in identifying and eliminating vulnerabilities. Fuzz testing, penetration testing,
and source code audits should all be incorporated as part of an effective guality assurance program. Independent security reviews can lead to more secure systems. External
reviewers bring an independent perspective; for example, in identifying and correcting invalid assumptions [Seacord 05].

10. Adopt a secure coding standard. Develop and/or apply a secure coding standard for your target development language and platform.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

OWASP TOP 10 Web Programming Vulnerabilities

AO01 Broken Access Control
A02 Cryptographic Failures
AO03 Injection

A04 Insecure Design

AO05 Security Misconfiguration

A06 Vulnerable and Outdated Components

AOQ7 Identification and Authentication
Open Web Application Failures _ _
Security Project A08 Software and Data Integrity Failures

A09 Security Logging and Monitoring
Failures

A10 Server Side Request Forgery (SSRF)

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

A01:2021 — Broken Access Control

* Moving up from the fifth position, 94% of applications were
tested for some form of broken access control with the average
incidence rate of 3.81%, and has the most occurrences in the
contributed dataset with over 318k. Notable Common Weakness
Enumerations (CWEs) included are CWE-200: Exposure of Sensitive
Information to an Unauthorized Actor, CWE-201: Insertion of
Sensitive Information Into Sent Data, and CWE-352: Cross-Site
Request Forgery.

* Access control enforces policy such that users cannot act outside
of their intended permissions. Failures typically lead to unauthorized
information disclosure, modification, or destruction of all data or
performing a business function outside the user's limits. Common
access control vulnerabilities include:

. Violation of the principle of least privilege or deny by default
where access should only be granted for particular capabilities, rofes,
or users, but is available to anyone.

. Bypassing access control checks by modifying the URL
(parameter tampering or force browsing), internal application state,
or the HTML page, or by using an attack tool modifying API requests.

. Permitting viewing or editing someone else's account, by
providing its unique identifier (insecure direct object references)

. Accessing APl with missing access controls for POST, PUT and
DELETE

. Elevation of prjvileﬁe. Acting as a user without being logged in
or acting as an admin when logged in as a user.

. Metadata manipulation, such as replaying or tampering with a
JSON Web Token (JWT) access control token, or a cookie or hidden
field manipulated to elevate privileges or abusing JWT invalidation.

. CORS misconfiguration allows API access from
unauthorized/untrusted origins.

* Force b_ro_wsing to authenticated pages as an unauthenticated
user or to privileged pages as a standard user.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

A02:2021 — Cryptographic
Failures

The first thing is to determine the protection needs of data in transit and at rest. For example, passwords,
credit card numbers, health records, personal information, and business secrets require extra protection,
mainly if that data falls under privacy laws, e.g., EU's General Data Protection Regulation (GDPR), or
regulations, e.g., financial data protection such as PCl Data Security Standard (PCI DSS). For all such data:

* Isany data transmitted in clear text? This concerns protocols such as HTTP, SMTP, FTP also using TLS
upgrades like STARTTLS. External internet traffic is hazardous. Verify all internal traffic, e.g., between load
balancers, web servers, or back-end systems.

* Are any old or weak cryptographic algorithms or protocols used either by default or in older code?

* Are default crypto keys in use, weak crypto keys generated or re-used, or is proper key management or
rotation missing? Are crypto keys checked into source code repositories?

* Is encryption not enforced, e.g., are any HTTP headers (browser) security directives or headers missing?
* Isthe received server certificate and the trust chain properly validated?

* Areinitialization vectors ignored, reused, or not generated sufficiently secure for the cryptographic
mode of operation? Is an insecure mode of operation such as ECB in use? Is encryption used when
authenticated encryption is more appropriate?

* Are passwords being used as cryptographic keys in absence of a password base key derivation function?
* Israndomness used for cryptographic purposes that was not designed to meet cryptographic
requirements? Even if the correct function is chosen, does it need to be seeded by the developer, and if not,
has the developer over-written the strong seeding functionality built into it with a seed that lacks sufficient
entropy/unpredictability?

* Are deprecated hash functions such as MD5 or SHA1 in use, or are non-cryptographic hash functions
used when cryptographic hash functions are needed?

* Are deprecated cryptographic padding methods such as PKCS number 1 v1.5 in use?

* Are cryptographic error messages or side channel information exploitable, for example in the form of
padding oracle attacks?

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

A03:2021 - Injection

* An application is vulnerable to attack when:

* User-supplied data is not validated, filtered, or sanitized by
the application.

* Dynamic queries or non-parameterized calls without
context-aware escaping are used directly in the interpreter.

* Hostile data is used within object-relational mapping (ORM)
© search parameters to extract additional, sensitive records.

* Hostile data is directly used or concatenated. The SQL or
command contains the structure and malicious data in dynamic
gueries, commands, or stored procedures.

* Some of the more common injections are SQL, NoSQL, OS
command, Object Relational Mapping (ORM), LDAP, and
Expression Language (EL) or Object Graph Navigation Library
(OGNL) injection. The concept is identical among all
interpreters. Source code review is the best method of
detecting if applications are vulnerable to injections.
Automated testing of all parameters, headers, URL, cookies,
JSON, SOAP, and XML data inputs is strongly encouraged.
Organizations can include static (SAST), dynamic (DAST), and
interactive (IAST) application security testing tools into the
CI/CD pipeline to identify introduced injection flaws before
production deployment.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

A04:2021 — Insecure Design

Insecure design is a broad category representing different weaknesses,
expressed as “missing or ineffective control design.” Insecure design is not the
source for all other Top 10 risk categories. There is a difference between
insecure design and insecure implementation. We differentiate between
design flaws and implementation defects for a reason, they have different root
causes and remediation. A secure design can still have implementation
defects leading to vulnerabilities that may be exploited. An insecure design
cannot be fixed by a perfect implementation as by definition, needed security
controls were never created to defend against specific attacks. One of the
factors that contribute to insecure design is the lack of business risk profiling
inherent in the software or system being developed, and thus the failure to
determine what level of security design is required.

* The application might be vulnerable if the application is:

* Missing appropriate security hardening across any part of the
application stack or improperly configured permissions on cloud
services.

* Unnecessary features are enabled or installed (e.g., unnecessary
ports, services, pages, accounts, or privileges).

* Default accounts and their passwords are still enabled and

unchanged.
. _ ; * Error handling reveals stack traces or other overly informative error
A05:2021 — Security messages to USers.
Misco nfigu ration * For upgraded systems, the latest security features are disabled or not

configured securely.

* The security settings in the application servers, application
frameworks (e.g., Struts, Spring, ASP.NET), libraries, databases, etc., are
not set to secure values.

* The server does not send security headers or directives, or they are
not set to secure values.

* The software is out of date or vulnerable (see A06:2021-Vulnerable
and Outdated Components).

* Without a concerted, repeatable application security configuration
process, systems are at a higher risk.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

A06:2021 — Vulnerable and
Outdated Components

You are likely vulnerable:

If you do not know the versions of all components you use (both client-side and server-side).
This includes components you directly use as well as nested dependencies.

If the software is vulnerable, unsupported, or out of date. This includes the OS, web/application
server, database management system (DBMS), applications, APIs and all components, runtime
environments, and libraries.

If you do not scan for vulnerabilities regularly and subscribe to security bulletins related to the
components you use.

If you do not fix or upgrade the underlying platform, frameworks, and dependencies in a risk-
based, timely fashion. This commonly happens in environments when patching is a monthly or
quarterly task under change control, leaving organizations open to days or months of
unnecessary exposure to fixed vulnerabilities.

If software developers do not test the compatibility of updated, upgraded, or patched libraries.
If you do not secure the components’ configurations (see A05:2021-Security Misconfiguration).

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

A07:2021 —
|dentification and
Authentication
Failures

* Confirmation of the user's identity, authentication, and session
management is critical to protect against authentication-related
attacks. There may be authentication weaknesses if the application:

* Permits automated attacks such as credential stuffing, where the
attacker has a list of valid usernames and passwords.

* Permits brute force or other automated attacks.

* Permits default, weak, or well-known passwords, such as
"Passwordl1" or "admin/admin".

* Uses weak or ineffective credential recovery and forgot-password
processes, such as "knowledge-based answers," which cannot be
made safe.

* Uses plain text, encrypted, or weakly hashed passwords data
stores (see A02:2021-Cryptographic Failures).

* Has missing or ineffective multi-factor authentication.
* Exposes session identifier in the URL.
* Reuse session identifier after successful login.

* Does not correctly invalidate Session IDs. User sessions or
authentication tokens (mainly single sign-on (SSO) tokens) aren't
properly invalidated during logout or a period of inactivity.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

A08:2021 -
Software and
Data Integrity
Failures

» Software and data integrity failures relate to code and infrastructure
that does not protect against integrity violations. An example of this is
where an application relies upon plugins, libraries, or modules from
untrusted sources, repositories, and content delivery networks (CDNs).
An insecure CI/CD pipeline can introduce the potential for unauthorized
access, malicious code, or system compromise. Lastly, many applications
now include auto-update functionality, where updates are downloaded
without sufficient integrity verification and applied to the previously
trusted application. Attackers could potentially upload their own
updates to be distributed and run on all installations. Another example
is where objects or data are encoded or serialized into a structure that
an attacker can see and modify is vulnerable to insecure deserialization.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

A09:2021 —
Security
Logging and
Monitoring
Failures

* Returning to the OWASP Top 10 2021, this category is to help
detect, escalate, and respond to active breaches. Without logging
and monitoring, breaches cannot be detected. Insufficient
logging, detection, monitoring, and active response occurs any
time:

* Auditable events, such as logins, failed logins, and high-value
transactions, are not logged.

* Warnings and errors generate no, inadequate, or unclear log
messages.

* Logs of applications and APIs are not monitored for suspicious
activity.
* Logs are only stored locally.

* Appropriate alerting thresholds and response escalation
processes are not in place or effective.

* Penetration testing and scans by dynamic application security
testing (DAST) tools (such as OWASP ZAP) do not trigger alerts.

* The application cannot detect, escalate, or alert for active
attacks in real-time or near real-time.

* You are vulnerable to information leakage by making logging
and alerting events visible to a user or an attacker (see A01:2021-
Broken Access Control).

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

A10:2021 — Server-Side
Request Forgery (SSRF)

* SSRF flaws occur whenever a web application is
fetching a remote resource without validating the
user-supplied URL. It allows an attacker to coerce
the application to send a crafted request to an
unexpected destination, even when protected by a
firewall, VPN, or another type of network access
control list (ACL).

* As modern web applications provide end-users
with convenient features, fetching a URL becomes a
common scenario. As a result, the incidence of
SSRF is increasing. Also, the severity of SSRF is
becoming higher due to cloud services and the
complexity of architectures.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

OWASP TOP 10

2017 2021
A01:2021-Broken Access Control
A02:2021-Cryptographic Failures
> A03:2021-Injection
[New) AD4:2021-Insecure Design
A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components
A07:2017-Cross-Site Scripting (XSS) A07:2021-Identification and Authentication Failures
A08:2017-Insecure Deserialization / {New) ADB:2021-Software and Data Integrity Failures
A09:2017-Using Components with Known Vulnerabilities //—%AOB:ZOZZI—Secutitv Logging and Monitoring Failures*
A10:2017-Insufficient Logging & Monitoring (Mew) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey

AD1:2017-Injection
AD2:2017-Broken Authentication
A03:2017-Sensitive Data Exposure
A04:2017-XML External Entities (XXE)
A05:2017-Broken Access Control
A06:2017-Security Misconfiguration

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

OWASP Top 10 - 2010

A1l - Injection

A2 — Cross Site Scripting (XSS)

A3 — Broken Authentication and Session Management

A4 — Insecure Direct Object References

AS — Cross Site Request Forgery (CSRF)

A6 — Security Misconfiguration (NEW)

A7 — Failure to Restrict URL Access

A8 — Unvalidated Redirects and Forwards (NEW)

A9 — Insecure Cryptographic Storage

A10 - Insufficient Transport Layer Protection

OWASP TOP 10 loT (2018)

\

'l” X XEARS . g

7
1 H -’”

LT g Wl :
| ;'" ,,'//o", TN,

%, g ” N INE A
\N\saen

b » -
NIRRT OK
\\'\t’\:~ At |////4//‘ 4 :0

Ll ™ S e
‘\'\\\“\“{\\\3& ea'.’:""/}.,"'i:i;# -Iifs'

I1 Weak Guessable, or Hardcoded Passwords
I2 Insecure Network Services

I3 Insecure Ecosystem Interfaces

14 Lack of Secure Update Mechanism

I5 Use of Insecure or Outdated Components
16 Insufficient Privacy Protection

I7 Insecure Data Transfer and Storage

I8 Lack of Device Management

19 Insecure Default Settings

110 Lack of Physical Hardening

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

AP11:2023 - Broken Object Level Authorization

API2:2023 - Broken Authentication

API3:2023 - Broken Object Property Level Authorization

AP14:2023 - Unrestricted Resource Consumption

API5:2023 - Broken Function Level Authorization

AP16:2023 - Unrestricted Access to Sensitive Business Flows

API7:2023 - Server Side Request Forgery

API8:2023 - Security Misconfiguration

API19:2023 - Improper Inventory Management

AP110:2023 - Unsafe Consumption of APIs

OWASP TOP 10 API

APIs tend to expose endpoints that handle object identifiers, creating a wide attack surface of Object Level Access
Control issues. Object level authorization checks should be considered in every function that accesses a data source
using an ID from the user.

Authentication mechanisms are often implemented incorrectly, allowing attackers to compromise authentication
tokens or to exploit implementation flaws to assume other user's identities temporarily or permanently. Compromising
a system's ability to identify the client/user, compromises API security overall.

This category combines API3:2019 Excessive Data Exposure and AP16:2019 - Mass Assignment, focusing on the root
cause: the lack of or improper authorization validation at the object property level. This leads to information exposure
or manipulation by unauthorized parties.

Satisfying APl requests requires resources such as network bandwidth, CPU, memory, and storage. Other resources
such as emails/SMS/phone calls or biometrics validation are made available by service providers via APl integrations,
and paid for per request. Successful attacks can lead to Denial of Service or an increase of operational costs.

Complex access control policies with different hierarchies, groups, and roles, and an unclear separation between
administrative and regular functions, tend to lead to authorization flaws. By exploiting these issues, attackers can gain
access to other users’ resources and/or administrative functions.

APIs vulnerable to this risk expose a business flow - such as buying a ticket, or posting a comment - without
compensating for how the functionality could harm the business if used excessively in an automated manner. This
doesn't necessarily come from implementation bugs.

Server-Side Request Forgery (SSRF) flaws can occur when an APl is fetching a remote resource without validating the
user-supplied URI. This enables an attacker to coerce the application to send a crafted request to an unexpected
destination, even when protected by a firewall or a VPN.

APIs and the systems supporting them typically contain complex configurations, meant to make the APIs more
customizable. Software and DevOps engineers can miss these configurations, or don't follow security best practices
when it comes to configuration, opening the door for different types of attacks.

APIs tend to expose more endpoints than traditional web applications, making proper and updated documentation
highly important. A proper inventory of hosts and deployed API versions also are important to mitigate issues such as
deprecated APl versions and exposed debug endpoints.

Developers tend to trust data received from third-party APIs more than user input, and so tend to adopt weaker
security standards. In order to compromise APls, attackers go after integrated third-party services instead of trying to
compromise the target APl directly.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/
https://owasp.org/API-Security/editions/2023/en/0xa5-broken-function-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows/
https://owasp.org/API-Security/editions/2023/en/0xa7-server-side-request-forgery/
https://owasp.org/API-Security/editions/2023/en/0xa8-security-misconfiguration/
https://owasp.org/API-Security/editions/2023/en/0xa9-improper-inventory-management/
https://owasp.org/API-Security/editions/2023/en/0xaa-unsafe-consumption-of-apis/

OWASP TOP 10 Mobile (2023)

M1: Insecure Authentication/Authorization
M2: Insecure Communication

M3: Inadequate Supply Chain Security
M4: Inadequate Privacy Controls

M5: Improper Credential Usage

M6: Insufficient Input/Output Validation
M7: Security Misconfiguration

M8: Insufficient Cryptography

M9: Insecure Data Storage

M10: Insufficient Binary Protections

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Avoid Displaying Detailed Error
Messages

The stack trace gives detailed information about the exception occurred that helps the attacker in
determining loopholes and security flaws in an application

For example, the database error message will give hints to the attacker that the application is
vulnerable to a SQL injection attack

To remove this vulnerability in exception handling, avoid printing the stack trace when the exception

is caught
Vulnerable Code Secure Code

B demo - Microsoft i Quick Launch (Cirl+Q) = @

File Edit Project Build Debug Team Tools Signin

0 demo- Microsoft 7 Quick Launch (Ctrl+Q) P - 0

File Edit Project Build Debug Team Tools Sign in

Test Analyze | w Help
Q- B-o-abld Xoa ?-
Default.aspucs® ® X testaml* Encryption.cs*
&1 demo demo._Default - @ TextBxample()

Test Analyze Help
G- B-o-aBd %O ? -
Default.asprcs®™ # X testaml* Encryption.cs*

&1 demo demo._Default - @ TextBxample()

TextExample() TextExample()

ClientScript.RegisterClientScriptBlock(
GetType(),

t", ex.StackTrace.ToString()); sage.ToString());

1 Publish = 4 Publish «

It prints detailed error message
It prints only error message

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Avoid Displaying Detailed Error
Messages

The Exception.ToString() method should not be used when the information about the exception is to be
shown to the user

This method prints a stack trace and may give internal information about the application, making it
vulnerable to attack

Instead, Exception.Message should be used, which gives a simple description about the exception

Vul ble Cod
ulnerable Code Secure Code

& | Quick Launch (Ctrl+Q) P - 0O x Dd dema - M Jdio & Quick Launch (Ctrl+Q) P - 0

ject Build Debug Team Toocls Test Analyze Signin File Edit oject Build Debug Team Tools Test Analyze Signin
Window Help
B-o-a@BH Xda ?- Debug -2 Fe o o - B-h-ORH XD 9 - Debug
Contact.aspr.cs™ # X Encryption.cs Default.aspx.cs™ Global.a Contact.aspx.es® # X Encryption.cs fault.aspx.cs® Global.
®1demo - ‘ISn:Iernu:u.Tes.tE:-::ar'r1p|e 2 M rgs - Bl demo - ‘l;u:Ier'n-:u.Tes.tE-::ar'nple - @

[1 args)

s.CompareTo(my); s.CompareTo(my);

+ ion ex)

le.WriteLine("Error: {@}", ex.To5tring()); LERE (AT 2 (Sdssam)h

88 % * 4
Find Results 1
4 Publish =

Ln 23 5 4 Publish =

ex.ToString () prints detailed error message ex.Mess age prlnts Only error message

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Checklist for Proper Exception

Handling

* Structured exception-handling provides an efficient, clean, and unobtrusive way of handling

exceptions in the application

* Here are some of the techniques for handling exceptions properly:

Use single try and many catches

Arrange the catch blocks from specific to general

Always reach to valid state

Throw the closest match

Do not throw exceptions for normal occurring
events

Extend the ApplicationException class, not the Base
Exception class

Use the inner
exception property when re-throwing

Do not create new exception

Name appropriately

Try to use a single try and many catch statements in a program, which may increase
the readability of your code

Make sure that the different types of exceptions are placed from most specific to
most general

Ensure that the objects in code are returned to a valid state after an exception. This
can be done by implementing the necessary cleanup under the finally block

While handing more than one exception for representing the same errors, use closely
matching error conditions

Do not use exceptions for commonly occurring events; instead, throw exceptions only
when something out of the ordinary happens

Never extend the base class System.Exception; always try to extend the
ApplicationException class

Use the base System.Exception class to wrap another new exception from throwing
that checks the Inner Exception property, determining the cause of the problem

Use the existing exceptions that are well defined in the .NET Framework rather than
creating new exceptions

After creating any Exception class, name it with the word ending ‘Exception’ so that
there will not be any conflicts

C++ Exceptions

« Exception handling - catch errors before they occur
» Deals with synchronous errors (i.e., Divide by zero)

« Does not deal with asynchronous errors - disk I1/0O completions, mouse clicks
- use interrupt processing

» Used when system can recover from error

« Exception handler - recovery procedure

« Typically used when error dealt with in different place than where it occurred
« Useful when program cannot recover but must shut down cleanly

« Exception handling should not be used for program control

« Not optimized, can harm program performance

Dr. Chuck Easttom, M.Ed, MSDS MBA, MSSE, Ph.D.2, D.Sc.

C++ Exceptions

* If none of the catch handlers for a try block matches a thrown exception the exception
moves to the next enclosing try block.

* If there is no match in any enclosing try block the exception is uncaught. An uncaught
exception also occurs if a new exception is thrown before an existing one is handled.
Cleanups may fail to occur with an uncaught exception, so this is an error.

* If an exception is uncaught the special function terminate() is called.

* Uncaught exceptions can always be avoided by enclosing the contents of mainin a try
block with an ellipsis handler.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

ISOCCPP Error Handling Rules

* E.1: Develop an error-handling strategy early in a design

* E.2: Throw an exception to signal that a function can’t perform its assigned task
* E.3: Use exceptions for error handling only

* E.4: Design your error-handling strategy around invariants

* E.5: Let a constructor establish an invariant, and throw if it cannot

* E.6: Use RAIl to prevent leaks

* E.7: State your preconditions

* E.8: State your postconditions

* E.12: Use noexcept when exiting a function because of a throw is impossible or unacceptable
* E.13: Never throw while being the direct owner of an object

* E.14: Use purpose-designed user-defined types as exceptions (not built-in types)
* E.15: Throw by value, catch exceptions from a hierarchy by reference

* E.16: Destructors, deallocation, and swap must never fail

* E.17: Don’t try to catch every exception in every function

* E.18: Minimize the use of explicit try/catch

* E.19: Use a final_action object to express cleanup if no suitable resource handle is available
* E.25:If you can’t throw exceptions, simulate RAIl for resource management

* E.26: If you can’t throw exceptions, consider failing fast

* E.27:If you can’t throw exceptions, use error codes systematically

* E.28: Avoid error handling based on global state (e.g., errno)

* E.30: Don’t use exception specifications

* E.31: Properly order your catch-clauses

*http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-errors

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-errors

ISOCCPP Philosophy

P.1: Express ideas directly in code
P.2: Write in ISO Standard C++
P.3: Express intent
P.4: Ideally, a program should be statically type safe
P.5: Prefer compile-time checking to run-time checking
e P.6: What cannot be checked at compile time should be checkable at run
time
e P.7: Catch run-time errors early
e P.8:Don’tleak any resources
* P.9: Don’t waste time or space
e P.10: Prefer immutable data to mutable data
 P.11: Encapsulate messy constructs, rather than spreading through the code
 P.12: Use supporting tools as appropriate
 P.13: Use support libraries as appropriate

e http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-philosophy

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-philosophy

R 4
Section I

‘ Database

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Database Security

O Use strongly typed parameterized queries. Parameterized queries keep the query and data separate
through the use of placeholders. The query structure is defined with place holders and then the
application specifies the contents of each placeholder.

O Utilize input validation and if validation fails, do not run the database command.

U Ensure that variables are strongly typed.

[Escape meta characters in SQL statements.

U The application should use the lowest possible level of privilege when accessing the database.
O Use secure credentials for database access.

U Do not provide connection strings or credentials directly to the client. If this is unavoidable, encrypted
them.

U Use stored procedures to abstract data access.

O Turn off any database functionality (e.g., unnecessary stored procedures or services).
O Eliminate default content. 43

U Disable any default accounts that are not required to support business requirements.
U Close the connection as soon as possible.

U The application should connect to the database with different credentials for every trust distinction
(e.g., user, read-only user, guest, administrators).

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Database types

Relational databases use tables that are related via keys
and communicates with Structure Query Language. SQL
Server, Oracle, MySQL, and Postgres are the most
common examples.

A NoSQL database is not a relational database and does
not use SQL. MongoDB is the most common example.
Hierarchical Database Management Systems
Object-Oriented Database Management Systems
Object-Relational Database Management Systems

44

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

RDMS

Relational databases are based on relations

The structure includes tables, primary and foreign keys, and relations.

Each row represents a single entity

Each column represents a single attribute

Each record is identified by a unique number called a primary key.

N . . - N

Tables are related by foreign keys. A foreign key is a primary key in another table.

45

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

SQL Server, Oracle, MySQL, PostGres, MS

i inave

. 1 Smith ne 1/10/2010
Relat|0na| 2 Perez Jyan 2 1/14/2011
3 Kent I 3/2/2005
DB e O I
5 PIa n k M 1 Super hero None 100,000 1,000,000
2 Programmer BA/BS 70,000 95,000
3 Math / Scientist Pﬂ'% 80,000 110,000
4 Manager BA/BS 140,000 220,000

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

DBMS Should Provide:

Transaction persistence

Fault tolerance and recovery

Sharing by multiple users
Security controls

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

47

Database Security Issues

Unauthorized Access
Improper Modification of Data
Access Availability

Query attacks

Bypass attacks

Interception of data

Data contamination

Database
Interface

Standardized access methods that
provide an interface to the database.

Examples include:
Open Database Connectivity (ODBC)
Object Linking and Embedding (OLE)
ActiveX Data Objects (ADO)
Java Database Connectivity (JDBC)

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Database
Transactions

Records retrieval

Records update

Records creation

Transactional integrity
Nested or complex transactions executed as a
unit
Begin work... <transactions> ...end work

50

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Database

Access controls

e Userids, passwords
e Table / row / field level access control
e Read-only or read/write

Security =
Controls

Views

e Virtual tables that are a subset of
individual
tables, or a “join” between tables

® Permission given to views just like
“real” tables

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

51

Used to control read and write access to
specific rows of data in relational systems,
or objects in object-oriented systems.

Locks ensure only one user at a time can
I—OCk alter data.

Controls

Better programming logic and testing
reduce deadlocking problem:s.

52

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Atomicity

e either all changes take effect or none do.

Lock Controls

ihe AGID

T t e a transaction is allowed only if it meets
€S owner/system-defined integrity constraints.

Isolation

¢ the results of the transaction are not visible until the
transaction is complete.

Durability

e a completed transaction is permanent.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

What is NoSQL

* Some say it means Not Only SQL others say Not SQL. Which you prefer is
up to you.

* It is a database architecture not based on relations and that does not
depend on the use of structured query language.

e Atits heart it is polyglot persistence. Polyglot persistence is defined as
using different data stores in different circumstances. Basically, a much more
malleable structure than RDMS/SQL has.

* It is more of a neoligsm than a definition. The term “NoSQL” is applied to a
variety of data storage implementations.

¢
= NoSQL

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

NoSQL Definition

From www.nosgl-database.org:
Next Generation Databases mostly addressing some
of the points: being non-relational, distributed, open-
source and horizontal scalable. The original intention
has been modern web-scale databases. The
movement began early 2009 and is growing rapidly.
Often more characteristics apply as: schema-free,
easy replication support, simple API, eventually
consistent / BASE (not ACID), a huge data amount,
and more.

NoSQL

NoSQL of today traces back to 2009. Essentially a number of
developers were interested in alternative data storage. There where

NoSQL H isto ry - examples such as BigTable, Dynamo, and Hadoop. This group of
. developers came up with the name "NoSQL". According to the book
Contin ued "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot

Persistence", the term was suggested by Eric Evans, a developer with
RackSpace.

NoSQL Databases

NoSQL databases are not based on the relational data model.

There is no standard NoSQL model.

Many different data models are grouped under the NoSQL umbrella, including
document stores, graph stores, column stores, and key-value stores.

The word stores is used often in lieu of database. Store indicates that these
models permanently store data.

There is no schema in NoSQL

NoSQL often uses Aggregates

NoSQL Databases

Asynchronous Inserts & Updates

Schema-less

ACID transaction properties are not needed — BASE

CAP Theorem

Open Source (usually)

Most NoSQL databases are geared toward performance rather than transaction consistency

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Key-value Example: DynamoDB, Voldermort, FoundationDB

Blolelllgal=lal s Example: MongoDB, CouchDB, ClusterPoint,
based CouchBase

NOSQL
categories

Column-
based

Example: BigTable, Cassandra, Hbase

Example: Neo4lJ, InfoGrid

59

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Key-value

Focus on scaling to huge amounts of data
Designed to handle massive load

Based on Amazon’s dynamo paper

Data model: (global) collection of Key-value pairs
Dynamo ring partitioning and replication
Example: (DynamoDB)

items having one or more attributes (name, value)

N O S Q An attribute can be single-valued or multi-valued like
L set.

items are combined into a table

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Document-based

Can model more complex objects
Inspired by Lotus Notes
Data model: collection of documents

Document: JSON (JavaScript Object Notation is a data
model, key-value pairs, which supports objects, records,
structs, lists, array, maps, dates, Boolean with nesting),
XML, other semi-structured formats.

—'

NoSQL

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Column-based

One column family can have variable
numbers of columns

Cells within a column family are sorted “physically”
Very sparse, most cells have null values
= Comparison: RDBMS vs column-based NOSQL

Query on multiple tables

RDBMS: must fetch data from several places on disk and
"' glue together

Column-based NOSQL: only fetch column families of those

columns that are required by a query (all columns in a
column family are stored together on the disk, so multiple
O rows can be retrieved in one read operation [l data locality)

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Graph-based

Focus on modeling the structure of data
(interconnectivity)

Scales to the complexity of data
Inspired by mathematical Graph Theory (G=(E,V))
Data model:

(Property Graph) nodes and edges
Nodes may have properties (including ID)

Edges may have labels or roles

Key-value pairs on both

Interfaces and query languages vary

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

NoSQL Query
Answers =

Answers returned quickly
Answers more important
than inserts

Data is replicated to
multiple nodes
Can query closest node

Improved response
time

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Inserts and
Updates

-

Inserts and updates are
asynchronous v
You might not get the

latest inserts in your

NoSQL
You might not get the

latest updates in your

query
Consistency is eventual,

not immediate

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Typical NoSQL API

Basic APl access:
get(key) -- Extract the value given a key.
put(key, value) -- Create or update the value given its key.
delete(key) -- Remove the key and its associated value(s).
execute(key, operation, parameters) -- Invoke an operation.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

BASE Transactions

Acronym contrived to be the opposite of ACID
Basically Available,
Soft state,
Eventually Consistent

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Basically
Available

NoSQL is all about
availability

Basically available,
means the data is
available even with
multiple failures.
Accomplished by data
replications

NoSQL

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

The state of the data may not be
consistent

Consistency is not handled by
the database/datastore
Consistency is the problem of
the programmer

Soft state ‘

T
¢

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Consistency Is not

always current

Eventually
Consistent

It must eventually

be consistent

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Weak consistency

Best effort
BASE
Characteristics

Approximate answers

Simpler and faster

PART [l

Web Programming

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Request to read a Web page

Request to read a Web page

Web Traffic

Web traffic uses the hyper text transfer A Request to write a Web page
protocol, or HTTP. That protocol POST Request to append to a page
normally operates on port 80. The

primary means of communication is via »] 30373 Remove the Web page
messages. This table gives you a

summary of the basic HTTP messages a LINK Connects two existing resources

web page might send to a web server. - ,
Breaks an existing connection

UNLINK

between two resources

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

® ®
i ® ¢ fo o
g 5 o.‘
& .. &
‘ot @ °
(W% e+ Web Traffic
e 0%, _
.@®
2 ; . ® *The most common are GET, HEAD, PUT, and POST. In fact, you might see only
e 24 @ ® o *O those four during most of your analysis of web traffic. Link and Unlink are a lot
vyt less common. You should know that the GET command actually is the server
® .: o getting information. To quote the WWC “The GET method means retrieve
@q o '. ée whatever information (in the form of an entity) is identified by the Request-URI.
® , o@llE, * ' If the Request-URI refers to a data-producing process, it is the produced data
L ‘ * e which shall be returned as the entity in the response and not the source text of
2 ‘. L4 the process, unless that text happens to be the output of the process. “
7. @ ... *There are important differences between GET and POST
9 o *GET requests can be cached POST requests are never cached
o i 4 ® g *GET requests remain in the browser history(by default), POST requests do not
e , e remain in the browser history
@ o 4 *GET requests can be bookmarked POST requests cannot be bookmarked
- *GET requests have length restrictions POST requests have no restrictions on
K data length
° *GET requests should never be used when dealing with sensitive data

*http://www.w3schools.com/tags/ref httpmethods.asp

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

RFC details on GET and
POST

e RFC 2616 defines HTTP

* Limitations on the request body size are set by the server and
in some cases proxies. However, section 10.4.15 of RFC2616
specifies response code 414 Request-URI Too long in the event
that the URL length exceeds the server limit.

* The 413 Request Entity Too Large response status code
indicates that the request entity is larger than limits defined by
server; the server might close the connection or return a Retry-
After header field.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

RFC details on GET and POST

The HTTP protocol does not place any a priori limit on the
length of a URI. Servers MUST be able to handle the URI
of any resource they serve, and SHOULD be able to
handle URIs of unbounded length if they provide GET-
based forms that could generate such URIs. A server
SHOULD return 414 (Request-URI Too Long) status if a
URI is longer than the server can handle

* -https://www.letf.org/rfc/rfc2616.txt

Message Range

100

200-299

300-399

400-499

500-599

Meaning

These are just informational. The server is telling your browser some information, most of which will never be
displayed to the user. For example when you switch from http to https, a 101 message goes to the browser telling

it that the protocol is changing.

These are basically ‘OK’ messages, meaning that whatever the browser requested, the server successfully
processed. Your basic HTTP messages like POST, GET, HEAD, etc. should, if everything is working properly, get a

200 code in response.

These are redirect messages telling the browser to go to another URL. For example 301 means that the
requested resource has permanently moved to a new URL, but the message code 307 indicates the move is
temporary.

These are client errors, and the ones most often shown to the end user. This might seem odd since, for example
404 file not found means that the server could not find the file you asked for. However, the issue is that the

server functioned properly, just that file does not exist. Therefore the client request was in error.

These are server side errors. For example 503 means the service requested is down, possibly overloaded. You will

see this error frequently in DoS attacks.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Web Traffic

These error messages can be important
for web security. Some of the reasons
are shown in the table above. For
example, multiple 503 errors could
indicate a Denial of Service attack. Error
code 305 is also interesting. It states
that the requested source is only
available via a proxy. That gives
information about the architecture of
that web server. Message 407 is
related, but it states that authentication
with the proxy is required.

Redirects

*Quote from OWASP

*“The best way to find out if an application has any
unvalidated redirects or forwards is to:

*Review the code for all uses of redirect or forward
(called a transfer in .NET). For each use, identify if the
target URL is included in any parameter values. If so,
verify the parameter(s) are validated to contain only
an allowed destination, or element of a destination.
*Also, spider the site to see if it generates any
redirects (HTTP response codes 300-307, typically
302). Look at the parameters supplied prior to the
redirect to see if they appear to be a target URL or a
piece of such a URL. If so, change the URL target and
observe whether the site redirects to the new target.
°If code is unavailable, check all parameters to see if
they look like part of a redirect or forward URL
destination and test those that do. “

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Declarative security
authentication

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

BASIC Authentication

* For declarative security
and basic
authentication:

* the directory as The server Inx1.cs.ctyu.edu.hk at BASIC Authentication Area
. requires a username and password.
protected in <url-

Warning: This server is requesting that your username and

pattern>in web.xml password be sent in an insecure manner (basic authentication

(for restricted servlet, WENE 8 soate o)

also declare it in <url- User name: [v

pattern>) Password: i |
* The server will pop up [JRemermber my password

a standard

authentication window
asking for username &
password

I ok 1| canca |

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Basic Form-based

Get username and password
by using browser provided
dialog box

Get username and password
by using a customized login

page

Only username and password

Basic vs. Form-
can be collected

based
Authentication

Customized data can be
collected (literally whatever
the programmer wants)

HTTP Authentication header is
used to convey username and
password

Form data is used to convey
username and password

It is automatic

Programmer has to do the
work

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

OWASP HTML
Sanitizer Project
https://www.ow

asp.org/index.p
hp/OWASP Java

HTML Sanitizer

Project

HTML Sanitizer written in Java which lets
you include HTML authored by third-
parties in your web application and
protects against XSS

Easy to use..
Maintained by Google's AppSec team

This is code from the Caja project that
was donated by Google. It is rather high
performance and low memory
utilization.

Download from
https://search.maven.org/#search%7Cg
a%7C1%7Cowasp%20htmI%20sanitizer

https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://search.maven.org/#search%7Cga%7C1%7Cowasp%20html%20sanitizer
https://search.maven.org/#search%7Cga%7C1%7Cowasp%20html%20sanitizer

JavaScript
html sanitizer

* https://code.google.com/archi

ve/p/google-
caja/wikis/JsHtmlSanitizer.wiki

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

https://code.google.com/archive/p/google-caja/wikis/JsHtmlSanitizer.wiki
https://code.google.com/archive/p/google-caja/wikis/JsHtmlSanitizer.wiki
https://code.google.com/archive/p/google-caja/wikis/JsHtmlSanitizer.wiki

HTTP Strict Transport Security (HSTS) is an opt-in security
enhancement that is specified by a web application through the
use of a special response header. Once a supported browser
receives this header that browser will prevent any communications
from being sent over HTTP to the specified domain and will
instead send all communications over HTTPS. It also prevents
HTTPS click through prompts on browsers.

HTTP Strict transport -

security https://www.owasp.org/index.php/HTTP_Strict_Transport_Security

Examples
Strict-Transport-Security: max-age=31536000;
includeSubDomains

Supported by IE 11, Firefox 4, Opera 12, Safari with OS X 10.9
and Chrome 4.0.211

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Encoding Unsafe Output using
HtmlEncode

Html encoding is done when the data reads from user input, database,
or local file

The attacker uses unsafe characters in the input field to perform
injection attacks

The HtmlEncode method is used to convert the unsafe input
characters to their HTML-encoded equivalent

HtmlEncode converts unsafe characters as follows:
< is converted to <
> is converted to >
& is converted to &

(") is converted to "

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Encoding Unsafe Output using HtmlEncode

[llustration of Htm1Encode Method

default.aspx | accessdenied. aspx TraceHelper.vh My AsvncResult, vb AsvncMadule, vb Servicel . a:

Client Objects & Events % || (Mo Events)

<%[d Paoge Language="vh"™ LutoEventWireup="falzse™ CodeBehind="default.:
< !DOZTYPE html FPUELIC "-//W3C//DTD XHTML 1.0 Transitional//EN"™ "htt:

E <html xmlns="http://wuw. w3 . org/ 1999 xhtml™ =

f—] <head runat="server">

<title>The default asp page</titler

- </ heads

-] whodys

E{center}

- <%

Fesponse.Write("Hello, " & Server.HtwmlEncode (User.Identity.Name))

-5
-<foenters
- </ hodys>
Lo/ htmls

If we run this page and enter some HTML code in the input text box, it will produce safe
output

For example, <script>say hello;</script> input is given to the textbox, it will produce safe
output as <script> say hello;</script> only instead of running “say hello” script

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Using Escape Routines to Handle
Special Input Characters

* This technique is used to escape special characters from user input before supplying them to query

* It is used when parameterized queries or stored procedures cannot be used and have no other option
besides using dynamic SQL query

* In such a situation, it is necessary to safeguard against special user input characters supplied that have
special meaning to SQL Server; if not handled, a character such as (‘) may cause SQL injection

* Escape routines are defined to replace the escape characters with characters having special meaning to
SQL Server thereby avoiding harmful characters from being supplied to the query

Dq - Microsoft Visual Studio : Juick Launch (Ctrl+ Q)

File Edit View Project Build Debug Team Tools Test Analyze Window Help Sign in
o - B-1-a Mg XOo 9~ Debug ~ Any CPU R (= S

Home.aspx.cs® ® X Home.aspx
& ScreenShots -~ *% ScreenShots.Home -~ @ SafeSqlLiteral(string inputSQL)
] =

inputsQL.Replace(’

| SafesglLiteral(inputSQL)

88 2%

Find Results 1

Ln V& i : 5 f Publish «

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Using Parameterized Queries

Secure Code (Parameterized Query)

1 String customer = request.getParameter ("username");

2 // Parameterizing

3 String query = "SELECT * FROM users WHERE username = ?";
4 PreparedStatement query prepared =

5 query prepared.setString(l, customer);

3 ResultSet results = query prepared.executeQuery() ;

connection.prepareStatement (query) ;

This parameterized approach of the query helps in preventing the change in the intent of the query,

thus preventing an attack

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Implementing SSL to Encrypt Cookies

The cookies should be encrypted using SSL whenever they are transmitted over the network in order to prevent them
from being stolen

Set the cookieRequireSSL element to true to use SSL for communication in the Web.config file

<system.web>

<httpCookles httponlyCookies="true" requiressL="true"” />
</system.web>

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Setting a Limited Time Period for
Expiration

* If the time period of cookies is set to be less, then the attacker will get less time to steal the cookies, thus
reducing the risk of stealing the cookies of that session

* Reduce the cookies’ time period in the roleManager properties in the Web.config file

<html>
<head>
<script>
<I--
function WriteCookie() {
var now = new Date();
var minutes = 3@;
now.setTime(now.getTime() + (minutes * 6@ * 1000));
cookievalue = escape(document.myform.customer.value) + ;"
document . cookie="name=" + cookievalue;
document.cookie = "expires=" + now.toUuTCString() + ";"
document.write ("Setting Cookies : " + "name=" + cookievalue);
¥
11-->
</script>
</head>
<body>

<form name="myform" action="">
Enter name: <input type="text" name="customer"/>
<input type="button"” value="Set Cookie™ onclick="WriteCookie()"/>
</form>
</body>
</html>

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Secure JavaScript

Avoid Eval() The eval() function in JavaScript is used to evaluate a string as JavaScript code
and execute it. While this function can be convenient for some dynamic programming tasks,
it poses a significant security risk when misused. Arbitrary Code Execution: If you're using
eval() to execute code from an untrusted source, you're giving that source the ability to run
arbitrary code on your application. This can lead to various attacks, including code injection
and data theft. If you're using eval() to parse JSON data, consider using JSON.parse() instead,
which is a safer and faster alternative. If you must use eval(), sanitize and validate the input
string to ensure it does not contain malicious code.
Use Content Security Policy (CSP) Content-Security-Policy: default-src 'self’;
Use HTTPS

if (window.location.protocol !=="https:") {

window.location.protocol = "https:"; }

Secure Cookies: document.cookie = "sessionld=12345; Secure; HttpOnly; SameSite=Strict";
Avoid Global Variables. Other scripts can modify global variables, leading to potential security
issues.

DoD DevSecOps Testing

Automate as much
developmental and
operational testing and
evaluation (OT&E),
iIncluding functional tests,
security tests, and non-
functional tests, as
possible.

DoD Enterprise DevSecOps Fundamentals Version 2.0

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

OWASP SAMM

The mission of OWASP Software Assurance Maturity
Model (SAMM) is to be the prime maturity model for
software assurance that provides an effective and
measurable way for all types of organizations to analyze
and improve their software security posture. OWASP
SAMM supports the complete software lifecycle,
including development and acquisition, and is technology

and process agnostic. It is intentionally built to be
evolutive and risk-driven in nature.

Open Web Application The original model (v1.0) was written by Pravir Chandra

Security Project and dates back from 2009. Over the last 10 years, it has
proven a widely distributed and effective model for
improving secure software practices in different types of
organizations throughout the world. Translations and
supporting tools have been contributed by the
community to facilitate adoption and alignment. With
version 2.0, we further improve the model to deal with
some of its current limitations.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

OWASP SAMM

SAMM is based around 15 security practices grouped into 5
business

functions. Every security practice contains a set of activities,
structured into 3 maturity levels. The activities on a lower

maturity level are typically easier to execute and require less
formalization than the ones on a higher maturity level. D WA S P

At the highest level, SAMM defines five business functions. ‘
Each business function is a category of activities that any

organization involved with software development must fulfill to

some degree.

Each business function has three security practices, areas of

security-related activities that build assurance for the related
business function.

OWASP SAMM

Governance Design Implementation Verification Operations
i i Architecture Incident
Strategy & Metrics Threat Assessment Secure Build
Assessment Management
Create & Measure & Application Threat Build P Software Architecture Architecture Incident Incident
Promote Improve Risk Profile Modeling s rreeess Dependencies Validation Mitigation Detection Response
Security Requirements-driven Environment

Policy & Compliance Secure Deployment

Requirements Testing Management
Policy & Compliance Software Supplier Deployment Secret Control MisusefAbuse Configuration Patching &
Standards Management Requirements Security Process Management Verification Testing Hardening Updating
Education & Operational
. Security Architecture Defect Management Security Testing P
Guidance Management
Training & Organization & Architecture Technology Defect Metrics & Scalable Deep Data Legacy
Awareness Culture Design Management Tracking Feedback Baseline Understanding Protection Management

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

OWASP SAMM

Stream A Sweam B
Create & Promote Measure & Improve
Maturity level 1 o

ldentify objectives and means of measuring effectiveness of the security program.

ldentify erganization drivers as they relate to Define metrics with insight into the
the organization's risk tolerance. effectiveness and efficiency of the
Application Security Program.

Maturity level 2 o0

Establish a unified strategic roadmap for software security within the organization,

Publish a unified strategy for application Set targets and KPI's for measuring the
security. program effectiveness,

Maturity level 3 000

Align security efforts with the relevant organizational indicators and asset values.

Align the application security program to Influence the strategy based on the metrics
support the organization's growth. and organizational needs.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Under each Security
Practice

« Three successive Objectives under each Practice define how it can be
improved over time

e This establishes a notion of a Level at which an organization fulfills a given
Practice

« The three Levels for a Practice generally correspond to:
e (0: Implicit starting point with the Practice unfulfilled)
 1:Initial understanding and ad hoc provision of the Practice
» 2:Increase efficiency and/or effectiveness of the Practice

* 3: Comprehensive mastery of the Practice at scale

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Per Level, SAMM defines

. Objective

. Activities

. Results

. Success Metrics
. Costs

. Personnel

. Related Levels

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Education & Guidance

Offer development staff access to resources around the topics of secure programming and deployment

AcTivimes
A, Conduct technical security awareness training

Enteer interrally or externally scurced, conduct security training for technical szaff that cow-
ers the basic tenets of application securite Generally, this can be accomplished via instrscron.
led raining in 1.2 days or via compurerbased wraining with miodules mking absur the same
amwaure of tme per developer.

Caurse content should caver bath conseptual and technical information Apprepriate topics
inlude high-level bast practices surrounding inpat walidaticn, cutput enceding. errer han-
dimg, lagging. suthentication, autharization. Additicral cowrge of tommenphce saftware
wulrerakilities is alsa desirable such as aTop 10 list apprepriste to the scftware being devel-
aped {wab applications, embedded devices, client-server applications, back-snd transadtion
wprbeny, et) Whersar possible, use codu samples and lab axerdees in the spesific pro-
gramming hinguage(s) that applies,

To rallawe such training, it s recommended ta mandare annual secunicy traning and then
hiold courses (either Instructarled or computerbased) as often as required based an devel-
apment head-cant

B. Build and maintain technical guidelines

For develepment stafl assemble a bst of approved documents, web pages, and technical noves
that prowide technology-specific security advice, These references can be assembled from
many publicly available reseurces on the Incernec. In cases where very spedalzed or pro-
prictary technologhes permeate the development emvironment, wiltze senior, securicy-savy

staff vo buld securicy notes over me oo creare such a knowledge base in an ad hac fashion.

Ensure managemuent is aware of the rescurces and briefs creoming stall aboue their ex-
pocted usage. Try to keep the guidelines lightweight and up-to-date to avaid clutber and irrel-
waance. Dnee a comfort-level has been established they can be used a5 2 qualitative checklist
to ersure thae the guidelines have been read, understoad, and fallowed in the developmaent
process

ResuLrs
* Increased develaper awareness on the
mast comeen probiems st the code kevel
A+ Maintain software with rudissmary
sicurity bist-practice in place
*+ Seq baseline for securicy know-
i amang wecheical seaff
*+ Enable quoicanive securiy checks
for bnsefine serurity knowladge

Success Merucs

* = 5% dewelopment saff brieded on
securmy issues within pase | year

>T5N senior divelopementl’
archivace st briefed on securiey
Ispues within pam | pear

+ Launch wechrical gaidance wirhn
1 manths of firer craming

CaosTs
Training course buikicur or boanse

* Cngeing maissenance of
techrical guidance

PERSOMMEL

* Dievalopers (1 -1 days'yr)
+ Arehiteers {12 dupslyr)

RevaTen Levews

* Policy & Complance - 2
+ Security Requiramests - |
+ Sesurw Archimesre - |

	Slide 1: Secure Coding
	Slide 2: Case 6
	Slide 3: Software Product Defects
	Slide 4: DoD DevSecOps Testing
	Slide 5: DoD DevSecOps Testing
	Slide 6: Reasons for Software Defects
	Slide 7: CERT Security Coding Standards
	Slide 8: CERT Security Coding Recommendations
	Slide 9: UDIs and CDIs
	Slide 10: Secure coding
	Slide 11: General guidelines for software Development
	Slide 12: Error Handling Rules
	Slide 13: Defensive Coding
	Slide 14: SANS top 25 software vulnerabilities
	Slide 15: Checklist Sections
	Slide 16: Object reuse
	Slide 17: Application Security Issues
	Slide 18: The CERT Oracle Secure Coding Standard for Java
	Slide 19: The CERT Top 10 Secure Coding Practices
	Slide 20: OWASP TOP 10 Web Programming Vulnerabilities
	Slide 21: A01:2021 – Broken Access Control
	Slide 22: A02:2021 – Cryptographic Failures
	Slide 23: A03:2021 – Injection
	Slide 24: A04:2021 – Insecure Design
	Slide 25: A05:2021 – Security Misconfiguration
	Slide 26: A06:2021 – Vulnerable and Outdated Components
	Slide 27: A07:2021 – Identification and Authentication Failures
	Slide 28: A08:2021 – Software and Data Integrity Failures
	Slide 29: A09:2021 – Security Logging and Monitoring Failures
	Slide 30: A10:2021 – Server-Side Request Forgery (SSRF)
	Slide 31: OWASP TOP 10
	Slide 32: OWASP TOP 10 IoT (2018)
	Slide 33: OWASP TOP 10 API
	Slide 34: OWASP TOP 10 Mobile (2023)
	Slide 35: Avoid Displaying Detailed Error Messages
	Slide 36: Avoid Displaying Detailed Error Messages
	Slide 37: Checklist for Proper Exception Handling
	Slide 38: C++ Exceptions
	Slide 39: C++ Exceptions
	Slide 40: ISOCCPP Error Handling Rules
	Slide 41: ISOCCPP Philosophy
	Slide 42: Section II
	Slide 43: Database Security
	Slide 44: Database types
	Slide 45: RDMS
	Slide 46: Relational DB
	Slide 47: DBMS Should Provide:
	Slide 48: Database Security Issues
	Slide 49: Database Interface
	Slide 50: Database Transactions
	Slide 51: Database Security Controls
	Slide 52: Lock Controls
	Slide 53: Lock Controls - the ACID Test
	Slide 54: What is NoSQL
	Slide 55: NoSQL Definition
	Slide 56: NoSQL History - Continued
	Slide 57
	Slide 58
	Slide 59: NOSQL categories
	Slide 60: Key-value
	Slide 61: Document-based
	Slide 62: Column-based
	Slide 63: Graph-based
	Slide 64: NoSQL Query Answers
	Slide 65: Inserts and Updates
	Slide 66: Typical NoSQL API
	Slide 67: BASE Transactions
	Slide 68: Basically Available
	Slide 69: Soft state
	Slide 70: Eventually Consistent
	Slide 71: BASE Characteristics
	Slide 72: PART IIII
	Slide 73: Web Traffic
	Slide 74: Web Traffic
	Slide 75: RFC details on GET and POST
	Slide 76: RFC details on GET and POST
	Slide 77
	Slide 78: Web Traffic
	Slide 79: Redirects
	Slide 80: Declarative security authentication
	Slide 81: BASIC Authentication
	Slide 82: Basic vs. Form-based Authentication
	Slide 83: OWASP HTML Sanitizer Project https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
	Slide 84: JavaScript html sanitizer
	Slide 85: HTTP Strict transport security
	Slide 86: Encoding Unsafe Output using HtmlEncode
	Slide 87: Encoding Unsafe Output using HtmlEncode
	Slide 88: Using Escape Routines to Handle Special Input Characters
	Slide 89: Using Parameterized Queries
	Slide 90: Implementing SSL to Encrypt Cookies
	Slide 91: Setting a Limited Time Period for Expiration
	Slide 92: Secure JavaScript
	Slide 93
	Slide 94: OWASP SAMM
	Slide 95: OWASP SAMM
	Slide 96
	Slide 97: OWASP SAMM
	Slide 98: Under each Security Practice
	Slide 99: Per Level, SAMM defines

