

Case Study 9

The Therac-25 went into service in 1983. For several years
and thousands of patients there were no problems. On June
3, 1985, a woman was being treated for breast cancer. She
had been prescribed 200 Radiation Absorbed Dose (rad) in
the form of a 10 MeV electron beam. The patient felt a
tremendous heat when the machine powered up. It wasn’t
known at the time, but she had been burned by somewhere
between 10,000 and 20,000 rad. The patient lived, but lost
her left breast and the use of her left arm due to the radiation.

Therac-25 relied on software controls to switch between
modes, rather than physical hardware. Preceding models
used separate circuits to monitor radiation intensity, and
hardware interlocks to ensure that spreading magnets were
correctly positioned. Using software instead would in theory
reduce complexity, and reduce manufacturing costs.

Container Deployment

A container manager provides capabilities that check
for new versions of containers, deploys the
containers to the production environment, and
performs post-deployment checkout. The container
manager consists of an OCl-compliant container
DOD runtime and a CNCF Certified Kubernetes, which is

an orchestration tool for managing microservices or
Devseco ps containerized applications across a cluster of nodes.

The nodes could be bare metal servers or VMs. The

ad nd container manager may be owned by a mission

a program or provided by the cloud hosting
co nta iNners environment. It simplifies container management
tasks, such as instantiation, configuration, scaling,
monitoring, and rolling updates. The CNCF Certified
Kubernetes interacts with the underlying
virtualization manager in the cloud environment to
ensure each node’s health and performance, and
scale it as needed. This scaling includes container
scaling within the CNCF Certified Kubernetes cluster,
but when running in a cloud, it also includes the
ability to auto-scale a number of nodes in a cluster
by adding or deleting VMs.

DevSecOps Fundamentals Guidebook:DevSecOps Tools & Activities March 2021 Version 2.0

DoD
DevSecOps
and Containers

Option B
DoD Authorized Container Service

A
Applications Applications
In order to support
containerized software factory Software Factory : Software Factory
. . (DoD Enterprise DevSecOps containers) {DoD Enterprise DevSecOps containers)
tools, the underlying container 4
orchestration must use CNCF Container Orchestration 4 l.DCDF;g:g?gf_m?gL?;ﬁﬁ,e 3
. ps (OCl compliant containers, Jrsd o o e s
cert'f'eg c';glbemetle,s atnd CNCF certified Kubernetes) R T Wby
suppor complian
; _ S Hosting Environment Hosting Environment
containers. CNCF CertIfIEd (DoD cloud, DoD data center, bare metal) (DoD cloud)
Kubernetes orchestrates A) \:!'

containers, interacts with
underlying hosting environment “d—p I Mission Program Responsihility and Managed Components

resources, and coordinates <) B Hosting Environment Provider Responsibility and Managed Components
clusters of nodes at scale in

development, testing and pre-

production in an efficient

manner. There are two options

for the container orchestration

layer as illustrated in Figure 13.. DoD Enterprise DevSecOps Reference Design August 2019

What is a container?

In software development, containers are lightweight, small,
deployable instances of applications that contain the minimum
resources required by an application or service to run on a host.
Abstraction of software from the underlying infrastructure allows
teams to easily develop, test and deploy code to a production
environment, making them ideal for applications and services hosted
on cloud platforms. Containers are running instances of images which
are read-only, standalone, executable packages of software that
include everything needed to run an application: source code,
runtime, system tools and libraries, and runtime settings. Containers
can be created, started, stopped, moved or deleted. Each container is
defined by its image in addition to any configuration settings applied
when the container is created or started.

Wilson, Glenn. DevSecOps: A leader’s guide to producing secure software without compromising flow,
feedback and continuous improvement (pp. 144-145). Rethink Press. Kindle Edition.

What is a
container?

A container is just a running
process controlled by the host
kernel

It is isolated from the host

and from other processes

There are different
containerization technologies
available

(Docker, Podman, Singularity,

etc.)

Kumar Rath, Ashwini. Concepts and Practices of DevSecOps: Crack

CO nta i ners the DevSecOps interviews (English Edition) (p. 89). BPB

Publications.

Server 1

Works perfectly
in different

sSCrver
"xﬁ_ environments
Container 4 without
worrying about
specific

L‘ﬂnfiguratinnﬂ

Server 2

Figure 4.1: Easy movement of containers through different server configurations

Containers

docker

Docker, introduced in 2013, has done
more than any other tool to popularize
container technology. Docker is an open-
source platform designed to automate
applications' deployment, scaling, and
management by encapsulating them into
containers. It uses resource isolation
features of the Linux kernel, such as
cgroups and kernel namespaces, and a
union-capable file system, such as
OverlayFS and others, to allow
independent containers to run within a
single Linux instance.

Kumar Rath, Ashwini. Concepts and
Practices of DevSecOps: Crack the
DevSecOps interviews (English Edition)
(p. 90). BPB Publications.

A chroot (short for "change root") is a Unix operation
that changes the perceived root directory for a
running process and its children. This allows a
process to operate within a restricted environment, as
if its root directory is a different directory on the
filesystem. Essentially, it creates a "jail" where the
process can only see and interact with files and
directories within that specific directory

The chroot command effectively changes the root
e directory for a process and its descendants. This
means that when a process inside the chroot tries to
access files or directories, it will only be able to see

those within the new root directory.
Sandboxing:

original
®
container e process from the res of the system limiing i
access to sensitive resources and data.

Security and Isolation:

The chroot operation creates a virtual filesystem
sandbox around the process. This sandbox isolates

By confining a process to a designated directory,
chroot can prevent unauthorized access to system
resources and data, facilitating system maintenance,
software testing, and running legacy software.

Docker Axchitecture

Client } (DOCKER_HOST)

docker build --{-- 4.4

Docker daemon

docker run —f

X
/ \
- | A
docker pull j| [Containers \-\ Images J—

https://docs.docker.com/get-started/overview/

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

11

Docker Architecture I

Docker *Client/Server architecture
Client

IP Socket e Uses IP sockets for communication
TCP port 2375 unencrypted

TCP port 2376 encrypted

*Clients can be on the same machine,
or communicate over a network

* Allows connections from multiple
concurrent clients!

Docker Server

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Docker Axchitecture II

Provides API to clients

4k

* Docker Daemon

‘:nntainerﬂ

e Starts new containers with runc
* Supervises and controls state of running
containers

Container

Docker Server

* runc reads container image specification

* Initializes container environment:
namespaces, cgroups, network (covered
later), etc.

* Creates persistent shim component

* Loads container programs and state

* runc exits when initialization is complete

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

* Docker Daemon

/

1

Container Container

Docker Server

‘:nntainerm

Container

- Provides API to clients

Docker Axchitecture III

Supervises and controls state of running
containers

* containerd clones a new runc for every
container it creates

* Resource intensive to maintain a copy of
runc for each container

* shim process maintains minimal
environment to allow container to
maintain communication with containerd

* This modular architecture allows
containers to stay online even if the

Daemon is restarted/upgraded

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Docker Images

containerd starts a container from a
Docker image

One image can launch multiple
containers

An image is built from a Dockerfile that
specifies the image’s attributes, files,
commands, etc.

Program Executable Process
Binary
Dockerfile Image Container

Building a Docker
Image

Docker images are layered

An image can inherit from a base image (e.g. a minimal Linux distribution,
with necessary files and directories)

Layers are additive:
dnf install —y httpd
dnf clean all

Files from the install are kept in the image, but marked deleted in the clean
layer

docker build uses a layer cache when building a new version of an existing
image

Installing
Docker

sudo apt-get install docker.io

This is the Ubuntu/Debian release package,
and installs dependencies as separate,
dynamically-linked libraries

Non-root user has access to Docker client

Add pi user to docker group to access
Docker server

Alpine Linux

Alpine Linux is a minimal Linux
distribution

Uses the lightweight musl c library
instead of glibc

Has a minimal set of shell utilities

Mounts a minimal set of files and
directories to enable interaction via
the host Linux kernel

Used as the base derive layer for
your image

* docker -d Start the docker daemon

* docker run — This command is used to start a new
Docker container from an image.

* docker ps — This command is used to list all the running
Docker containers.

DOCke r * docker rm — This command is used to remove a Docker
container.

CO m ma nd S * docker images — This command is used to list all the

Docker images that are currently available on your system.

* docker pull — This command is used to download a
Docker image from a registry.

https://docs.docker.com/reference/cli/docker/container/ ,
https://dockerlabs.collabnix.com/docker/cheatsheet/ ,

V4

https://docs.docker.com/reference/cli/docker/container/
https://docs.docker.com/reference/cli/docker/container/
https://dockerlabs.collabnix.com/docker/cheatsheet/
https://dockerlabs.collabnix.com/docker/cheatsheet/

Dockerize
a
Program

You will construct your own
Dockerfile

Start with Alpine Linux
Install gcc

Write and compile your own
program into the container

Observe the container as you
have in previous studios:
Run ps
Inspect cgroups and
namespaces
Look at the container’s
overlay filesystem

Containers as
Services

Docker containers are great for
encapsulating background services

Web applications
Databases
Logging server
Etc.

How can we run a Docker container in
the background (without attaching it to a
shell)?

How can we monitor that container?

How can we connect a terminal to it for
management?

How can we allocate and constrain
container resource usage?

22

Running a Container in the
Background

You can run a container in the background (detached from the terminal) with —d:
docker run —d mycontainer:v0

Useful for non-interactive services

View running containers with docker ps

Stop a container:
docker stop <container>: sends SIGTERM
docker kill <container>: sends SIGKILL
Can specify container NAME or ID

pi@rpi4-522sp22: docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

b95e56e7d759 studioll:latest "/bin/sh -c /app/hel..” 59 seconds ago Up 56 seconds

NAMES
wizardly_golick

e575edd7fbd4 studioll:v2 "/bin/sh -¢ /app/hel.." 2 days ago Up 2 days

awesome_wilbur

Entering a Container

What if you need to execute a command inside a running container?
For example, launch an interactive shell

Use Docker Exec:

docker exec —it <container> /bin/sh

Uses setns() syscall under the hood

You can also use the nsenter (namespace enter) utility:

1. Use docker ps to get the container name/ID
2. Use docker inspect to get the container’s PIDJoin with:
nsenter --target PID --mount --uts --ipc --net --pid

Logging
and
Events

Container output is logged by default to:
[var/lib/docker/containers/ID/ID-json.log

Default format is JSON (other log types are
supported)

View log with: docker logs <ID>

Server-wide container events can be
monitored with: docker events

start, stop, kill, etc.

Provides a running stream of events, updated
live

Volumes and Storage

Containers, by default, do not have persistent storage
Bind-mount a directory into a container:

docker run —v hostdir:containerdir

Read-only: hostdir:containerdir:ro

Docker can also create named volumes enabling persistent, shared storage
among containers

Create: docker volume create <name>
List: docker volume Is
Mount:

docker run --mount source=<name>,target=<containerdir>

Resource
Constraints

Docker allows you to apply resource
constraints to containers

These are enforced with cgroups

Docker Server 20.10 began experimental
support for cgroups v2

We use v2 for this class as it will likely be the
way of the future

Set quotas with docker run
Update quotas with docker update

Constraints and Cgroups

A resource constraint is provided as a flag + parameter value
Constraints, and their corresponding cgroup interface, include:

Resource Constraint _ cgroup v2 Interface

Memory limit -m, --memory= memory.max
CPU shares/weight (2-262170) -c, --cpu-shares=0 cpu.weight (1-10000)

CPU bandwidth --cpu-quota=0 cpu.max
--cpu-period=0
CPU bandwidth --cpus=0.000 cpu.max, period 100000
CPUs in which to allow --cpuset-cpus="" cpuset.cpus
execution
Real-time CPU bandwidth --cpu-rt-runtime=0 For real-time scheduling classes,

--cpu-rt-period=0 not yet supported in cgroups v2

Complete list at: https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Statistics

Docker provides a way to view container resource usage statistics:

docker stats <container>

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/0 BLOCK I/O PIDS

3c6451ca33b8 jovial nash 1680.56% 156KiB / 3.738GiB 0.006% 16.1kB / 883B ©B / 6B 1
Reads from cgroup stats interface files

Shows the defined memory limit

Continuously-updating

Grafana — Monitoring

@8 Docker container monitoring -

Inteny

Time ~
2019-09-20
15:17:54

2019-09-20
15117:54

2019-09-20
15117:54

2019-09-20
15117:54

2019-09-20
15117:54

2019-09-20
15:17:54

2019-09-20
15117:54

2019-09-20
15117:54

2019-09-20
15117:54

2019-09-20
15117:54

2019-09-20
15117:54

2019-09-20
15117:54

2019-09-20
15:17:54

Node Al v

Containers

L)

Containers
Instance

icsvs-app01.esss.lu.se
icsv-sentry01.esss.luse
icsv-dash.esss.lu.se
icsvp-app01.esss.lu.se
ipythonD1.esss.luse
recceiver-

01tnesssluse
channelfinder-
02tn.esssluse
ics-jproxy.esss.use

ics-ctrl-01.esssluse

csv-
ipythub02.esss use

artifactory02 esss.lu.se

gitlab-runner-
03.cslabesss.luse

ics-bot-01.esss.luse

name

swagger_naming

sentry-redis

sharelatex

traefik_proxy

Jupyter-nataliamilas

cadvisor

cadvisor

jenkins_proxy

CPUUsage ~
14 MiB

10 MiB

SMB

CPU Usage per Container

alerta_db @ alerta.n esss.lu.se
alerta_web @ alerta tn esss lu se
cadvisor @ alerta.tn esss luse
traefik_proxy @ alerta.tn esss.lu.se
alerta_db @ alerts-02 tn esss lu se
alerta_web @ alerts-02in.esss.luse
cadvisor @ alerts-02 tn esss lu se
traefik_proxy @ alerts-02 tn esss luse
artifactory @ artifactoryd1 esss lu.se
artifactory_database @ artifactory0l esss lu

cadvisor @ artifactory01.esss.lu.se

alerta_db @ alerta.tn esss luse
alerta_web @ alerta tn esss lu se

cadvisor @ alerta tn esss luse

traefik_proxy (@ alerta.tn.esss.lu.se

alerta_db @ alerts-02.tn.esss.lu.se

alerta_web @ alerts-02 tn esss lu se
cadvisor @ alerts-02 tn esss lu se

traefik_proxy @ alerts-02.tn esss luse

artifactory @ artifactorydl esss lu.se

pos_web

artifactory_database @ artifactory0l esss lu

cadvisor

artifactory_database

715 MiB
cadvisor

477 MiB

galaxy_bot_redis
238 MiB

04:00 08:00 cadvisor @ artifactory01 esss luse

Memory Swap per Container

alerta_db @ alerta.tn esss luse

alerta_web @ alerta.tn esss.luse

cadvisor @ alerta tn esss luse
traefik_proxy @ alerta tn esss lu se
alerta_db @ alerts-02 tn esss lu se
alerta_web @ alerts-02 tn esss lu se

cadvisor @ alerts-02 tn esss lu.se

traefik_proxy @ alerts-02.tn esss luse

artifactory @ artifactoryD1.esss lu.se
artifactory_database @ artifactory0l esss lu

cadvisor @ artifactory01 esss luse

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Network Traffic

15 MB/s

10 MB/s

o ORI

763 MiB
663 MiB

sT2MiB |
477 MiB ‘

381 MiB

286 MiB

Received Network Traffic per Container

Memory usage

0
16:00 20:00

15 MB/s
10 MB/s

sMB/s

A

04:00 08:00

Sent Network Traffic per Container

16:00 20:00

alerta_db @ alerta.in.esss.luse
alerta_web @ alerta tn esss lu se

cadvisor @ alerta tn esss lu.se

traefik_proxy @ aleria.tn.esss.luse
alerta_db @ alerts-02 tn.esss Ju se
alerta_web @ alerts-02.tn.esss.lu.se
cadvisor @ alerts-02 tn.esss lu.se
traefik_proxy @ alerts-02 tn esss Iu.se
artifactory @ artifactoryd1 esss luse
artifactory_dstabase @ artifactoryDl.esss u

cadvisor @ artifactory0.esss.luse

alerta_db @ alerta tn esss u se
alerta_web @ alerta tn esss lu se

cadvisor @ alerta tn esss lu se

traefik_proxy @ alerta.tn esss luse
alerta_db @ alerts-02 tn.esss Ju se
alerta_web @ alerts-02.tn esss u se
cadvisor @ alerts-02 tn.esss lu.se
traefik_proxy @ alerts-02 tn esss u.se
artifactory @ artifactoryd1 esss luse
artifactory_dstabase @ artifactoryDl.esss u

cadvisor @ artifactoryd] esss luse

Docker, inc provides a public-access hub
Contains 10,000+ publically usable images behind a CDN

What’s local?

S docker images

Where doorer e

REPOSITORY TAG IMAGE ID
ima es CREATED VIRTUAL SIZE
g new ubu latest b67902967df7
8 weeks ago 192.7 MB
come <none> <none> dd58b0ec6b9a
8 weeks ago 192.7 MB
<none> <none> 1d19dc9e2e4t
from 8 weeks ago 192.7 MB
rocker/rstudio latest 14fad19147b6
8 weeks ago 787 MB
ubuntu latest d0955f21bf24
8 weeks ago 192.7 MB
busybox latest 4986bf8cl536
4 months ago 2.433 MB
How to get

$ docker search image-name

S docker pull image-name

The Significance of Container
Scanning and Securing
Container Images

Containers have revolutionized software development by providing a consistent and lightweight
environment for deploying applications. However, their flexibility also introduces unique security
challenges. Securing container images and the environments they run in is essential for preventing
vulnerabilities from propagating across deployments. Key Reasons for Container Security:

Shared Resources: Containers often share the host operating system kernel, which makes them
vulnerable to kernel-level exploits.

Supply Chain Risks: Vulnerabilities in third-party base images or dependencies can compromise the
entire application stack.

Rapid Deployment: Continuous deployment pipelines can inadvertently propagate insecure images if
proper scanning is not enforced.

Container Scanning: Container scanning involves analyzing container images for vulnerabilities,
misconfigurations, and malicious components before deployment. Tools like Trivy, Clair, and Aqua
Security inspect the layers of a container image to identify:

Learning, Maxwell. Advanced DevSecOps: A Guide to Advanced DevSecOps Practices . Kindle Edition.

Hardening Docker Containers

* Implement the Following Recommendations to Harden Docker Containers:
* Unix Socket (/VAR/RUN/DOCKER.SOCK)
* Security Concern: The Docker client uses the Unix socket to communicate with the Docker daemon. Any container can mount
this socket and create a new image, shut down the existing container, etc.
* Solution: Configure proper SELinux/AppArmor profiles to restrict the mounting of the container on the Unix socket
* Volume Mounts
* Security Concern: In Docker, it is possible to mount sensitive host directories and modify the content of the host file system
directly. This is a serious concern for application containers with direct exposure to the Internet
* Solution: Host-sensitive directories should be mounted as read-only
Privileged Containers
Security Concern: Privileged containers run with all capabilities and can perform tasks like a host
Solution: Use capabilities for granting fine-grained privilege
SSH within Container
Security Concern: The handling of SSH keys and access policies is challenging if the SSH service is run inside containers
Solution:
Avoid running SSH services inside a container
Run SSH on the host and utilize docker exec or docker attach for interacting with the container
Binding of Privileged Ports
Security Concern: Binding privileged ports (<1024) to containers is enabled by default in Docker, and these ports are
inaccessible. Most of the time, it is essential to map http port 80 with https port 443 to run a server in the container
» Solution: Check all the containers and their port mappings by utilizing the command docker ps --quiet | xargs docker inspect --
format ': Ports=". Ensure that the container’s port is not mapped with a host port below port 1024
* Exposing Ports
Security Concern: Unnecessary ports may be exposed
Solution: Check all the containers and the exposed ports using the command docker ps --quiet | xargs docker inspect --format
: Ports=’ . Ensure that unnecessary ports are not exposed
Running without Default AppArmor/SELinux or seccomp
Security Concern: A Docker container may be run by disabling profiles such as AppArmor/SELinux and seccomp profiles
Solution: The default profiles provided by Docker should not be disabled
Sharing Host Namespaces
Security Concern: Inappropriate management of the sharing of namespaces leads to serious security issues. The container can
iew and kill the PID on the host or establish connections with privileged ports
Solution: Do not share host namespaces with containers

e < o o o o o

Hardening Docker Containers
(Cont’d)

* Avoid Setting the Mount Propagation Mode to Shared

* Security Concern: When a volume is mounted in the shared mode, other
containers are not restricted from mounting and modifying that volume. If the
mounted volume is sensitive to changes, such mounting is a serious security
concern

* Solution: List out the propagation mode for mounted volumes by running the
command docker ps --quiet --all | xargs docker inspect --format ': Propagation=
’ and avoid setting the mount propagation mode to shared until required

* Prevent a Container from Gaining New Privileges

* Security Concern: A process can prevent a container from gaining new privileges
by setting the no_new_priv bit, which functions across clone, execve, and fork

* Solution: List out security options for all containers using the command docker
ps --quiet --all | xargs docker inspect --format ': SecurityOpt=‘. Ensure that the
security option output encompasses no_new_privileges in output

HashiCorp Packer: Build
Customize Docker Image

e Use HashiCorp Packer to automatically create any
Docker image based on the requirement

* The automated provisioning feature of Packer
helps in installing and configuring software in the
machine before converting it into an image

* Using Packer’s automation feature, images can be
changed instantly and integrated with Puppet or
Chef

--version] [--help] <command> [<args>1

Kubernetes

Kubernetes is used to manage and scale
applications running in containers, which are
small, isolated environments. It simplifies the
reliable management of numerous apps and
services, even when they are distributed
across multiple servers.

* Kubernetes automates things like:
» Starting new apps when needed.
* Restarting apps if they crash.

* Spreading out work so that no one
part of the system is overloaded.

* Scaling up or down based on demand.

36

Kubernetes

* Service discovery and load balancing Kubernetes can expose a container using the DNS name or using their own IP
address. If traffic to a container is high, Kubernetes is able to load balance and distribute the network traffic so that the
deployment is stable.

» Storage orchestration Kubernetes allows you to automatically mount a storage system of your choice, such as local
storages, public cloud providers, and more.

* Automated rollouts and rollbacks You can describe the desired state for your deployed containers using Kubernetes, and it
can change the actual state to the desired state at a controlled rate. For example, you can automate Kubernetes to create new
containers for your deployment, remove existing containers and adopt all their resources to the new container.

* Automatic bin packing You provide Kubernetes with a cluster of nodes that it can use to run containerized tasks. You tell
Kubernetes how much CPU and memory (RAM) each container needs. Kubernetes can fit containers onto your nodes to make
the best use of your resources.

* Self-healing Kubernetes restarts containers that fail, replaces containers, kills containers that don't respond to your user-
defined health check, and doesn't advertise them to clients until they are ready to serve.

* Secret and configuration management Kubernetes lets you store and manage sensitive information, such as passwords,
OAuth tokens, and SSH keys. You can deploy and update secrets and application configuration without rebuilding your
container images, and without exposing secrets in your stack configuration.

* Batch execution In addition to services, Kubernetes can manage your batch and Cl workloads, replacing containers that
fail, if desired.

* Horizontal scaling Scale your application up and down with a simple command, with a Ul, or automatically based on CPU
usage.

* IPv4/IPv6 dual-stack Allocation of IPv4 and IPv6 addresses to Pods and Services

* Designed for extensibility Add features to your Kubernetes cluster without changing upstream source code.

Kubernetes

* kubectl config view: View kubeconfig configuration.
* kubectl get context: List available contexts.
* kubectl current-context: Display the current context.
* kubectl get nodes: Get information about nodes in the cluster.
* kubectl describe node <node-name>: Display detailed information about a specific node.
e kubectl run <pod-name> --image=<image-name>: Create a pod.
e kubectl logs <pod-name>: View logs of a pod.
e kubectl logs <pod-name> --previous: View logs from a previous instance of a pod.
* kubectl exec -it <pod-name> -- /bin/bash: Open an interactive shell inside a pod.
‘ * kubectl rollout restart deployment <deployment-name>: Restart a deployment.

* kubectl rollout undo deployment <deployment-name>: Undo a deployment to the
\previous revision.

* kubectl rollout history deployment <deployment-name>: View revision history of a
deployment.

@

Checkov: Scan Kubernetes Manifests Templates in

Azure Pipelines

» Kubernetes manifests are the building blocks for deploying applications in the containers on a Kubernetes cluster
» The integration of Checkov with Azure pipelines ensures to maintain the integrity of the infrastructure by leveraging graph-based

By Prisma Cloud | version: x.x.x
Passed checks: 70, Failed checks: 19, Skipped checks: @

Check: CKV_K85_37: "Minimize the admission of containers with capabilities assigned”
FAILED for resource: Pod.default.podl
File: /rootContainersFAILED.yaml:2-10
Guide: https://docs.prismacloud.io/en/enterprise-edition/policy-reference/kubernet

apiversion: vi1

kind: Pod

metadata:
name: podl

containers:
- hame: main
image: alpine

scanning
= This helps the DevSecOps team to evaluate Kubernetes manifest templates to keep a check on security misconfiguration and
compliances
| LetsLearnAzure Pipelines D Search = Q, .
~ Connect v/ Select Configure Review
& Review your pipeline YAML Variables
% o
© Terraform-Templates / f yml * =D & Command line ©®
8 Script *
q 10 pos:\;mage: windows-2019 [plP3ln5(al|gb_engy]
- -
13 a Advanced v
& 14
&

» About this task m

Installing Checkov Using the pip3 Install Command

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

[N IN N IV N ST N

I
I
I
I
| spec:
I
I
I
I

0 command: ["/bin/sleep”, "999999"]

Scan Results

Deploying Jenkins on the Azure Kubernetes Service

» Use Jenkins for continuous integration (Cl) and Azure Pipelines for continuous delivery (CD) to deploy a Spring
Boot app to an Azure Container Service (AKS) Kubernetes cluster

» Deploying Azure on Kubernetes

az group create --name myResourceGroup --location eastus

az aks create -—--resource-group myEesourceGroup -—--name myiESCluster --
node-count 1 --enable-addons monitoring --generate-ssh-keys

pipeline {
agent any
stages {
stage('Build"} {
steps {
script {
dockerImage = docker.bulld("myrepo/myapp:${env.BUILD_ID}")

1
El

1

T

stage(‘Deploy to AKS') {
steps {

withkubeConfig([credentialsId: ‘my-aks-creds']) {

sh "kubectl apply -f k8s-deployment.yaml™

Deploying Jenkins on the Azure Kubernetes Service
(Cont'd)

Project azure-vote

& Back to Dashboard
, Status
= onanges kubectl get pods
K
£) Build Now - Norkspace
Delete Project
[

nnnnnnnn

= kubectl get services

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Integrate
Anchore
Container
Image
Scanner with
Jenkins and
Scan Docker

Images

* Integrate Anchore
container image scanner
with Jenkins to
automatically scan the
security vulnerabilities in a
Docker image

* Jenkins docker container
and Anchore engine docker
container must be run in
the same network

Anchore Build Options

Image list file anchore_images
Fail build on policy check STOP result @
Fail build on critical plugin error

AnchoreEngine operation retries 300

Add build step «

Anchore Container Image Scanner

Dacker Build and Publish

Execute Docker command
Execute Windows batch command
Execute shell

Invoke Ant

Invoke Gradle script

Invoke top-level Maven targets

Set build status to "pending” on GitHub commit

* Helm is a package manager for
Kubernetes (its packages are called
‘charts’)

* Helm charts contain Kubernetes
object definitions, but add the capacity
for additional templating, allowing
customizable settings when the chart
is installed

* Helm has a server component (tiller)
which runs in the Kubernetes cluster
to perform most actions, this must be
installed to install charts

» Charts can be obtained from the
official 'stable’ repository, but it is also
simple for an organization to operate
its own chart repository

Basic Use

* helm init # let helm set up both local data files and install its server
component

* helm search # search available charts (use helm search <repo-name>/ to
search just a particular repository)

* helm install <chart-name> # install a chart (use --values to specify a
customized values file)

* helm inspect values <chart-name> # fetch a chart's base values file for
customization

* helm list # list installed charts ('releases')

* helm delete # remove a release (use --purge to remove fully)

Chart Structure

* Chart.yaml - contains the chart's metadata
» Values.yaml - contains default chart settings

* templates/ - contains the meat of the chart, all yaml files describing
kubernetes objects (whether or not they have templated values)

« templates/ helpers.tpl - optional file which can contain helper code for filling
in the templates

Outline of a Simple Chart

Chart.yaml values.yaml
apiVersion: "v1" # The label to apply to this deployment,
name: "nginx" # used to manage multiple instances of the
version: 1.0.0 same application
appVersion: 1.7.9 Instance: default
description: "A simple nginx deployment which
serves a static page” # The HTML data that nginx should serve
Data: |-
<html>
<body>
<h1>Hello world!</h1>
</body>
</html>

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.?, D.Sc.

Creating a Chart Repository

(((

A repository is just a
directory containing an
index file and charts
packaged as tarballs which
is served via HTTP(S).

helm package <chart-

directory> # package a

chart into the current
directory

<
C[]")
helm repo index . #

(re)build the current
directory's index file

helm repo add <repo-
name> <repo-addr> # add a
non-official repository

Note: It is possible to install
a local chart without going
through a repository, which
is very helpful for
development, just use helm
install <chart-directory>

Open Container Initiative (OCl)

The Open Container Initiative (OCl) is an open governance
structure and a set of open standards for container technology,
aimed at ensuring interoperability and portability across container
platforms. It was launched in June 2015 by industry leaders
including Docker, CoreQS, and other major cloud and infrastructure
companies, under the umbrella of the Linux Foundation.

* https://opencontainers.org/

Open Container Initiative
(OCl)

OCl focuses on developing and maintaining three main specifications:
OCI Runtime Specification

* Defines how to run a container based on its filesystem bundle
(e.g., how container processes are started and managed).

* Popularimplementations include runc.
OCI Image Specification

* Standardizes the format of container images, ensuring they can
be used across different registries and runtimes.

* This makes container images portable and reusable.
OCI Distribution Specification

* Defines how container images are distributed, focusing on the
interaction with registries (e.g., Docker Hub or private
registries).

* https://opencontainers.org/

Platform One

Iron Bank is our vetted repository of
assessed containers, purpose-built to
enable the rapid, scalable, and secure
deployment of applications across the
DoD. Because reliable software starts
with trusted foundations.

* https://pl.dso.mil/ironbank

DoD Container Hardening Guide

* https://dl.dod.cyber.mil/wp-
content/uploads/devsecops/pdf/Final
DevSecOps Enterprise Container Ha
rdening Guide 1.2.pdf

https://p1.dso.mil/ironbank
https://p1.dso.mil/ironbank
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf

NIST Special Publication 800-190

Application Container Security Guide.
Published September 2017

Two types of risks are considered:

1. Compromise of an image or container.
This risk was evaluated using the data-

centric system threat modeling approach

described in NIST SP 800-154 . The primary N H

“data” to protect is the images and

containers, which may hold app files, data National Institute of

files, etc. The secondary data to protect is Standards and Technology

container data within shared host
resources such as memory, storage, and
network interfaces.

U.S. Department of Commerce

2. Misuse of a container to attack other
containers, the host OS, other hosts, etc

NIST Special Publication 800-190

Image Risks

* Image vulnerabilities

* Image configuration defects

* Embedded malware

 Embedded clear text secrets

e Use of untrusted images

Registry Risks

* Insecure connections to registries

» Stale images in registries

* Insufficient authentication and authorization
restrictions

Orchestrator Risks

* Unbounded administrative access

* Unauthorized access

* Poorly separated inter-container network
traffic

* Mixing of workload sensitivity levels

FedRamp — Container Vulnerability Scanning

Federal Risk and Authorization Management Program

The following requirements are supplemental and are applicable for all
systems implementing container technologies:

* Hardened Images

Container Build, Test, and Orchestration Pipeline

Vulnerability Scanning for Container Image

Security Sensors

Registry Monitoring

Asset Management and Inventory Reporting for Deployed Containers

https://www.fedramp.gov/assets/resources/documents/Vulnerability Sc
anning_Requirements_for_Containers.pdf

	Slide 1: Containers
	Slide 2: Case Study 9
	Slide 3: DoD DevSecOps and Containers
	Slide 4: DoD DevSecOps and Containers
	Slide 5: What is a container?
	Slide 6: What is a container?
	Slide 7: Containers
	Slide 8: Containers
	Slide 9: The original container
	Slide 11: Docker Architecture
	Slide 13: Docker Architecture I
	Slide 14: Docker Architecture II
	Slide 15: Docker Architecture III
	Slide 16: Docker Images
	Slide 17: Building a Docker Image
	Slide 18: Installing Docker
	Slide 19: Alpine Linux
	Slide 20: Docker Commands
	Slide 21: Dockerize a Program
	Slide 22: Containers as Services
	Slide 23: Running a Container in the Background
	Slide 24: Entering a Container
	Slide 25: Logging and Events
	Slide 26: Volumes and Storage
	Slide 27: Resource Constraints
	Slide 28: Constraints and Cgroups
	Slide 29: Statistics
	Slide 30: Grafana – Monitoring Docker containers
	Slide 31: Where images come from
	Slide 32: The Significance of Container Scanning and Securing Container Images
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Kubernetes
	Slide 37: Kubernetes
	Slide 38: Kubernetes
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Overview
	Slide 44: Basic Use
	Slide 45: Chart Structure
	Slide 46: Outline of a Simple Chart
	Slide 47: Creating a Chart Repository
	Slide 48: Open Container Initiative (OCI)
	Slide 49: Open Container Initiative (OCI)
	Slide 50: Platform One
	Slide 51: NIST Special Publication 800-190
	Slide 52: NIST Special Publication 800-190
	Slide 53: FedRamp – Container Vulnerability Scanning

