
Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Containers

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Case Study 9

The Therac-25 went into service in 1983. For several years
and thousands of patients there were no problems. On June
3, 1985, a woman was being treated for breast cancer. She
had been prescribed 200 Radiation Absorbed Dose (rad) in
the form of a 10 MeV electron beam. The patient felt a
tremendous heat when the machine powered up. It wasn’t
known at the time, but she had been burned by somewhere
between 10,000 and 20,000 rad. The patient lived, but lost
her left breast and the use of her left arm due to the radiation.

Therac-25 relied on software controls to switch between
modes, rather than physical hardware. Preceding models
used separate circuits to monitor radiation intensity, and
hardware interlocks to ensure that spreading magnets were
correctly positioned. Using software instead would in theory
reduce complexity, and reduce manufacturing costs.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

DoD
DevSecOps

and
Containers

Container Deployment

A container manager provides capabilities that check
for new versions of containers, deploys the
containers to the production environment, and
performs post-deployment checkout. The container
manager consists of an OCI-compliant container
runtime and a CNCF Certified Kubernetes, which is
an orchestration tool for managing microservices or
containerized applications across a cluster of nodes.
The nodes could be bare metal servers or VMs. The
container manager may be owned by a mission
program or provided by the cloud hosting
environment. It simplifies container management
tasks, such as instantiation, configuration, scaling,
monitoring, and rolling updates. The CNCF Certified
Kubernetes interacts with the underlying
virtualization manager in the cloud environment to
ensure each node’s health and performance, and
scale it as needed. This scaling includes container
scaling within the CNCF Certified Kubernetes cluster,
but when running in a cloud, it also includes the
ability to auto-scale a number of nodes in a cluster
by adding or deleting VMs.

DevSecOps Fundamentals Guidebook:DevSecOps Tools & Activities March 2021 Version 2.0

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

DoD
DevSecOps
and Containers

In order to support
containerized software factory
tools, the underlying container
orchestration must use CNCF
certified Kubernetes and
support OCI compliant
containers. CNCF-certified
Kubernetes orchestrates
containers, interacts with
underlying hosting environment
resources, and coordinates
clusters of nodes at scale in
development, testing and pre-
production in an efficient
manner. There are two options
for the container orchestration
layer as illustrated in Figure 13.. DoD Enterprise DevSecOps Reference Design August 2019

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

What is a container?

In software development, containers are lightweight, small,
deployable instances of applications that contain the minimum
resources required by an application or service to run on a host.
Abstraction of software from the underlying infrastructure allows
teams to easily develop, test and deploy code to a production
environment, making them ideal for applications and services hosted
on cloud platforms. Containers are running instances of images which
are read-only, standalone, executable packages of software that
include everything needed to run an application: source code,
runtime, system tools and libraries, and runtime settings. Containers
can be created, started, stopped, moved or deleted. Each container is
defined by its image in addition to any configuration settings applied
when the container is created or started.

Wilson, Glenn. DevSecOps: A leader’s guide to producing secure software without compromising flow,
feedback and continuous improvement (pp. 144-145). Rethink Press. Kindle Edition.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

What is a
container?

6

A container is just a running
process controlled by the host
kernel

It is isolated from the host
and from other processes

There are different
containerization technologies
available

(Docker, Podman, Singularity,
etc.)

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Containers
Kumar Rath, Ashwini. Concepts and Practices of DevSecOps: Crack
the DevSecOps interviews (English Edition) (p. 89). BPB

Publications.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Containers

Docker, introduced in 2013, has done
more than any other tool to popularize
container technology. Docker is an open-
source platform designed to automate
applications' deployment, scaling, and
management by encapsulating them into
containers. It uses resource isolation
features of the Linux kernel, such as
cgroups and kernel namespaces, and a
union-capable file system, such as
OverlayFS and others, to allow
independent containers to run within a
single Linux instance.

Kumar Rath, Ashwini. Concepts and
Practices of DevSecOps: Crack the
DevSecOps interviews (English Edition)
(p. 90). BPB Publications.

8

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

The

original

container

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Docker Architecture

11

https://docs.docker.com/get-started/overview/

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Docker Architecture I

13

Docker
Client

Docker Server

IP Socket
TCP port 2375 unencrypted
TCP port 2376 encrypted

Docker
Client

•Client/Server architecture

•Uses IP sockets for communication

•Clients can be on the same machine,
or communicate over a network

•Allows connections from multiple
concurrent clients!

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Docker Architecture II

14

Docker
Client

Docker Server

Docker Daemon

runc

shim

code &
state

Container

Provides API to clients

• Starts new containers with runc
• Supervises and controls state of running

containers

• runc reads container image specification
• Initializes container environment:

namespaces, cgroups, network (covered
later), etc.

• Creates persistent shim component
• Loads container programs and state
• runc exits when initialization is complete

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Docker Architecture III

15

Docker
Client

Docker Server

Docker Daemon

shim

code &
state

Container

shim

code &
state

Container

shim

code &
state

Container

Provides API to clients

• containerd clones a new runc for every
container it creates

• Resource intensive to maintain a copy of
runc for each container

• shim process maintains minimal
environment to allow container to
maintain communication with containerd

• This modular architecture allows
containers to stay online even if the
Daemon is restarted/upgraded

Supervises and controls state of running
containers

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Docker Images

containerd starts a container from a

Docker image

One image can launch multiple

containers

An image is built from a Dockerfile that

specifies the image’s attributes, files,

commands, etc.

16

Program Executable
Binary

Process

Dockerfile Image Container

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Building a Docker
Image

Docker images are layered

An image can inherit from a base image (e.g. a minimal Linux distribution,

with necessary files and directories)

Layers are additive:

dnf install –y httpd

dnf clean all

Files from the install are kept in the image, but marked deleted in the clean
layer

docker build uses a layer cache when building a new version of an existing

image

17

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Installing

Docker

sudo apt-get install docker.io

This is the Ubuntu/Debian release package,

and installs dependencies as separate,

dynamically-linked libraries

Non-root user has access to Docker client

Add pi user to docker group to access
Docker server

18

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Alpine Linux
Alpine Linux is a minimal Linux

distribution

Uses the lightweight musl c library

instead of glibc

Has a minimal set of shell utilities

Mounts a minimal set of files and

directories to enable interaction via

the host Linux kernel

Used as the base derive layer for

your image

19

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Docker
Commands

• docker -d Start the docker daemon

• docker run – This command is used to start a new
Docker container from an image.

• docker ps – This command is used to list all the running
Docker containers.

• docker rm – This command is used to remove a Docker
container.

• docker images – This command is used to list all the
Docker images that are currently available on your system.

• docker pull – This command is used to download a
Docker image from a registry.

https://docs.docker.com/reference/cli/docker/container/

https://dockerlabs.collabnix.com/docker/cheatsheet/

https://docs.docker.com/reference/cli/docker/container/
https://docs.docker.com/reference/cli/docker/container/
https://dockerlabs.collabnix.com/docker/cheatsheet/
https://dockerlabs.collabnix.com/docker/cheatsheet/

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Dockerize
a

Program

You will construct your own
Dockerfile

Start with Alpine Linux

Install gcc

Write and compile your own
program into the container

Observe the container as you
have in previous studios:

Run ps
Inspect cgroups and

namespaces
Look at the container’s

overlay filesystem

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Containers as

Services

Docker containers are great for
encapsulating background services

Web applications

Databases

Logging server

Etc.

How can we run a Docker container in
the background (without attaching it to a
shell)?

How can we monitor that container?

How can we connect a terminal to it for
management?

How can we allocate and constrain
container resource usage?

22

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Running a Container in the

Background
You can run a container in the background (detached from the terminal) with –d:

docker run –d mycontainer:v0
Useful for non-interactive services
View running containers with docker ps

Stop a container:
docker stop <container>: sends SIGTERM
docker kill <container>: sends SIGKILL

Can specify container NAME or ID

23

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Entering a Container

What if you need to execute a command inside a running container?

For example, launch an interactive shell

Use Docker Exec:

docker exec –it <container> /bin/sh

Uses setns() syscall under the hood

You can also use the nsenter (namespace enter) utility:

1. Use docker ps to get the container name/ID
2. Use docker inspect to get the container’s PIDJoin with:

nsenter --target PID --mount --uts --ipc --net --pid

24

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Logging

and

Events

Container output is logged by default to:

/var/lib/docker/containers/ID/ID-json.log

Default format is JSON (other log types are
supported)

View log with: docker logs <ID>

Server-wide container events can be
monitored with: docker events

start, stop, kill, etc.

Provides a running stream of events, updated
live

CSE 522S – Advanced Operating Systems 25

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Volumes and Storage

Containers, by default, do not have persistent storage

Bind-mount a directory into a container:

docker run –v hostdir:containerdir

Read-only: hostdir:containerdir:ro

Docker can also create named volumes enabling persistent, shared storage
among containers

Create: docker volume create <name>

List: docker volume ls

Mount:

docker run --mount source=<name>,target=<containerdir>

26

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Resource

Constraints
Docker allows you to apply resource
constraints to containers

These are enforced with cgroups

Docker Server 20.10 began experimental
support for cgroups v2

We use v2 for this class as it will likely be the
way of the future

Set quotas with docker run

Update quotas with docker update

27

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Constraints and Cgroups

A resource constraint is provided as a flag + parameter value

Constraints, and their corresponding cgroup interface, include:

28

Complete list at: https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources

Resource Constraint Flag cgroup v2 Interface

Memory limit -m, --memory="" memory.max

CPU shares/weight (2-262170) -c, --cpu-shares=0 cpu.weight (1-10000)

CPU bandwidth --cpu-quota=0
--cpu-period=0

cpu.max

CPU bandwidth --cpus=0.000 cpu.max, period 100000

CPUs in which to allow
execution

--cpuset-cpus="" cpuset.cpus

Real-time CPU bandwidth --cpu-rt-runtime=0
--cpu-rt-period=0

For real-time scheduling classes,
not yet supported in cgroups v2

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Statistics

Docker provides a way to view container resource usage statistics:

docker stats <container>

Reads from cgroup stats interface files

Shows the defined memory limit

Continuously-updating

29CSE 522S – Advanced Operating Systems

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Grafana – Monitoring

Docker containers

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Where

images

come

from

Docker, inc provides a public-access hub

Contains 10,000+ publically usable images behind a CDN

What’s local?

 $ docker images

$ docker images

REPOSITORY TAG IMAGE ID

CREATED VIRTUAL SIZE

new_ubu latest b67902967df7

8 weeks ago 192.7 MB

<none> <none> dd58b0ec6b9a

8 weeks ago 192.7 MB

<none> <none> 1d19dc9e2e4f

8 weeks ago 192.7 MB

rocker/rstudio latest 14fad19147b6

8 weeks ago 787 MB

ubuntu latest d0955f21bf24

8 weeks ago 192.7 MB

busybox latest 4986bf8c1536

4 months ago 2.433 MB

How to get

 $ docker search image-name

 $ docker pull image-name

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

The Significance of Container
Scanning and Securing
Container Images

Containers have revolutionized software development by providing a consistent and lightweight
environment for deploying applications. However, their flexibility also introduces unique security
challenges. Securing container images and the environments they run in is essential for preventing
vulnerabilities from propagating across deployments. Key Reasons for Container Security:

Shared Resources: Containers often share the host operating system kernel, which makes them
vulnerable to kernel-level exploits.

Supply Chain Risks: Vulnerabilities in third-party base images or dependencies can compromise the
entire application stack.

 Rapid Deployment: Continuous deployment pipelines can inadvertently propagate insecure images if
proper scanning is not enforced.

Container Scanning: Container scanning involves analyzing container images for vulnerabilities,
misconfigurations, and malicious components before deployment. Tools like Trivy, Clair, and Aqua
Security inspect the layers of a container image to identify:

Learning, Maxwell. Advanced DevSecOps: A Guide to Advanced DevSecOps Practices . Kindle Edition.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Hardening Docker Containers

• Implement the Following Recommendations to Harden Docker Containers:
• Unix Socket (/VAR/RUN/DOCKER.SOCK)
• Security Concern: The Docker client uses the Unix socket to communicate with the Docker daemon. Any container can mount
this socket and create a new image, shut down the existing container, etc.
• Solution: Configure proper SELinux/AppArmor profiles to restrict the mounting of the container on the Unix socket
• Volume Mounts
• Security Concern: In Docker, it is possible to mount sensitive host directories and modify the content of the host file system
directly. This is a serious concern for application containers with direct exposure to the Internet
• Solution: Host-sensitive directories should be mounted as read-only
• Privileged Containers
• Security Concern: Privileged containers run with all capabilities and can perform tasks like a host
• Solution: Use capabilities for granting fine-grained privilege
• SSH within Container
• Security Concern: The handling of SSH keys and access policies is challenging if the SSH service is run inside containers
• Solution:
• Avoid running SSH services inside a container
• Run SSH on the host and utilize docker exec or docker attach for interacting with the container
• Binding of Privileged Ports
• Security Concern: Binding privileged ports (<1024) to containers is enabled by default in Docker, and these ports are
inaccessible. Most of the time, it is essential to map http port 80 with https port 443 to run a server in the container
• Solution: Check all the containers and their port mappings by utilizing the command docker ps --quiet | xargs docker inspect --
format ': Ports=’. Ensure that the container’s port is not mapped with a host port below port 1024
• Exposing Ports
• Security Concern: Unnecessary ports may be exposed
• Solution: Check all the containers and the exposed ports using the command docker ps --quiet | xargs docker inspect --format
': Ports=’ . Ensure that unnecessary ports are not exposed
• Running without Default AppArmor/SELinux or seccomp
• Security Concern: A Docker container may be run by disabling profiles such as AppArmor/SELinux and seccomp profiles
• Solution: The default profiles provided by Docker should not be disabled
• Sharing Host Namespaces
• Security Concern: Inappropriate management of the sharing of namespaces leads to serious security issues. The container can
view and kill the PID on the host or establish connections with privileged ports
• Solution: Do not share host namespaces with containers

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Hardening Docker Containers
(Cont’d)

• Avoid Setting the Mount Propagation Mode to Shared

• Security Concern: When a volume is mounted in the shared mode, other
containers are not restricted from mounting and modifying that volume. If the
mounted volume is sensitive to changes, such mounting is a serious security
concern

• Solution: List out the propagation mode for mounted volumes by running the
command docker ps --quiet --all | xargs docker inspect --format ': Propagation=
’ and avoid setting the mount propagation mode to shared until required

• Prevent a Container from Gaining New Privileges

• Security Concern: A process can prevent a container from gaining new privileges
by setting the no_new_priv bit, which functions across clone, execve, and fork

• Solution: List out security options for all containers using the command docker
ps --quiet --all | xargs docker inspect --format ': SecurityOpt=‘. Ensure that the
security option output encompasses no_new_privileges in output

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

HashiCorp Packer: Build
Customize Docker Image

• Use HashiCorp Packer to automatically create any
Docker image based on the requirement

• The automated provisioning feature of Packer
helps in installing and configuring software in the
machine before converting it into an image

• Using Packer’s automation feature, images can be
changed instantly and integrated with Puppet or
Chef

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Kubernetes

Kubernetes is used to manage and scale
applications running in containers, which are
small, isolated environments. It simplifies the
reliable management of numerous apps and
services, even when they are distributed
across multiple servers.

• Kubernetes automates things like:

• Starting new apps when needed.

• Restarting apps if they crash.

• Spreading out work so that no one
part of the system is overloaded.

• Scaling up or down based on demand.

36

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Kubernetes

• Service discovery and load balancing Kubernetes can expose a container using the DNS name or using their own IP
address. If traffic to a container is high, Kubernetes is able to load balance and distribute the network traffic so that the
deployment is stable.

• Storage orchestration Kubernetes allows you to automatically mount a storage system of your choice, such as local
storages, public cloud providers, and more.

• Automated rollouts and rollbacks You can describe the desired state for your deployed containers using Kubernetes, and it
can change the actual state to the desired state at a controlled rate. For example, you can automate Kubernetes to create new
containers for your deployment, remove existing containers and adopt all their resources to the new container.

• Automatic bin packing You provide Kubernetes with a cluster of nodes that it can use to run containerized tasks. You tell
Kubernetes how much CPU and memory (RAM) each container needs. Kubernetes can fit containers onto your nodes to make
the best use of your resources.

• Self-healing Kubernetes restarts containers that fail, replaces containers, kills containers that don't respond to your user-
defined health check, and doesn't advertise them to clients until they are ready to serve.

• Secret and configuration management Kubernetes lets you store and manage sensitive information, such as passwords,
OAuth tokens, and SSH keys. You can deploy and update secrets and application configuration without rebuilding your
container images, and without exposing secrets in your stack configuration.

• Batch execution In addition to services, Kubernetes can manage your batch and CI workloads, replacing containers that
fail, if desired.

• Horizontal scaling Scale your application up and down with a simple command, with a UI, or automatically based on CPU
usage.

• IPv4/IPv6 dual-stack Allocation of IPv4 and IPv6 addresses to Pods and Services

• Designed for extensibility Add features to your Kubernetes cluster without changing upstream source code.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Kubernetes

• kubectl config view: View kubeconfig configuration.

• kubectl get context: List available contexts.

• kubectl current-context: Display the current context.

• kubectl get nodes: Get information about nodes in the cluster.

• kubectl describe node <node-name>: Display detailed information about a specific node.

• kubectl run <pod-name> --image=<image-name>: Create a pod.

• kubectl logs <pod-name>: View logs of a pod.

• kubectl logs <pod-name> --previous: View logs from a previous instance of a pod.

• kubectl exec -it <pod-name> -- /bin/bash: Open an interactive shell inside a pod.

• kubectl rollout restart deployment <deployment-name>: Restart a deployment.

• kubectl rollout undo deployment <deployment-name>: Undo a deployment to the
previous revision.

• kubectl rollout history deployment <deployment-name>: View revision history of a
deployment.

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Checkov: Scan Kubernetes Manifests Templates in
Azure Pipelines
▪ Kubernetes manifests are the building blocks for deploying applications in the containers on a Kubernetes cluster

▪ The integration of Checkov with Azure pipelines ensures to maintain the integrity of the infrastructure by leveraging graph-based

scanning

▪ This helps the DevSecOps team to evaluate Kubernetes manifest templates to keep a check on security misconfiguration and

compliances

Installing Checkov Using the pip3 Install Command Scan Results

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Deploying Jenkins on the Azure Kubernetes Service

▪ Use Jenkins for continuous integration (CI) and Azure Pipelines for continuous delivery (CD) to deploy a Spring

Boot app to an Azure Container Service (AKS) Kubernetes cluster

▪ Deploying Azure on Kubernetes

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Deploying Jenkins on the Azure Kubernetes Service
(Cont’d)

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Integrate
Anchore

Container
Image

Scanner with
Jenkins and
Scan Docker

Images

• Integrate Anchore
container image scanner
with Jenkins to
automatically scan the
security vulnerabilities in a
Docker image

• Jenkins docker container
and Anchore engine docker
container must be run in
the same network

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Overview

• Helm is a package manager for
Kubernetes (its packages are called
'charts')

• Helm charts contain Kubernetes
object definitions, but add the capacity
for additional templating, allowing
customizable settings when the chart
is installed

• Helm has a server component (tiller)
which runs in the Kubernetes cluster
to perform most actions, this must be
installed to install charts

• Charts can be obtained from the
official 'stable' repository, but it is also
simple for an organization to operate
its own chart repository

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Basic Use

• helm init # let helm set up both local data files and install its server
component

• helm search # search available charts (use helm search <repo-name>/ to
search just a particular repository)

• helm install <chart-name> # install a chart (use --values to specify a
customized values file)

• helm inspect values <chart-name> # fetch a chart's base values file for
customization

• helm list # list installed charts ('releases')

• helm delete # remove a release (use --purge to remove fully)

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Chart Structure

• Chart.yaml - contains the chart's metadata

• Values.yaml - contains default chart settings

• templates/ - contains the meat of the chart, all yaml files describing
kubernetes objects (whether or not they have templated values)

• templates/_helpers.tpl - optional file which can contain helper code for filling
in the templates

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

apiVersion: "v1"

name: "nginx"

version: 1.0.0

appVersion: 1.7.9

description: "A simple nginx deployment which

serves a static page"

Outline of a Simple Chart

The label to apply to this deployment,

used to manage multiple instances of the

same application

Instance: default

The HTML data that nginx should serve

Data: |-

 <html>

 <body>

 <h1>Hello world!</h1>

 </body>

 </html>

Chart.yaml values.yaml

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Creating a Chart Repository

A repository is just a
directory containing an

index file and charts
packaged as tarballs which

is served via HTTP(S).

helm package <chart-
directory> # package a
chart into the current

directory

helm repo index . #
(re)build the current
directory's index file

helm repo add <repo-
name> <repo-addr> # add a

non-official repository

Note: It is possible to install
a local chart without going

through a repository, which
is very helpful for

development, just use helm
install <chart-directory>

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Open Container Initiative (OCI)

The Open Container Initiative (OCI) is an open governance
structure and a set of open standards for container technology,
aimed at ensuring interoperability and portability across container
platforms. It was launched in June 2015 by industry leaders
including Docker, CoreOS, and other major cloud and infrastructure
companies, under the umbrella of the Linux Foundation.

• https://opencontainers.org/

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Open Container Initiative
(OCI)
OCI focuses on developing and maintaining three main specifications:

OCI Runtime Specification

• Defines how to run a container based on its filesystem bundle
(e.g., how container processes are started and managed).

• Popular implementations include runc.

OCI Image Specification

• Standardizes the format of container images, ensuring they can
be used across different registries and runtimes.

• This makes container images portable and reusable.

OCI Distribution Specification

• Defines how container images are distributed, focusing on the
interaction with registries (e.g., Docker Hub or private
registries).

• https://opencontainers.org/

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

Platform One

Iron Bank is our vetted repository of
assessed containers, purpose-built to
enable the rapid, scalable, and secure
deployment of applications across the
DoD. Because reliable software starts
with trusted foundations.

• https://p1.dso.mil/ironbank

DoD Container Hardening Guide

• https://dl.dod.cyber.mil/wp-
content/uploads/devsecops/pdf/Final
_DevSecOps_Enterprise_Container_Ha
rdening_Guide_1.2.pdf

https://p1.dso.mil/ironbank
https://p1.dso.mil/ironbank
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardening_Guide_1.2.pdf

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

NIST Special Publication 800-190

Application Container Security Guide.
Published September 2017

Two types of risks are considered:

1. Compromise of an image or container.
This risk was evaluated using the data-
centric system threat modeling approach
described in NIST SP 800-154 . The primary
“data” to protect is the images and
containers, which may hold app files, data
files, etc. The secondary data to protect is
container data within shared host
resources such as memory, storage, and
network interfaces.

2. Misuse of a container to attack other
containers, the host OS, other hosts, etc

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

NIST Special Publication 800-190

Image Risks
• Image vulnerabilities
• Image configuration defects
• Embedded malware
• Embedded clear text secrets
• Use of untrusted images
Registry Risks
• Insecure connections to registries
• Stale images in registries
• Insufficient authentication and authorization
restrictions
Orchestrator Risks
• Unbounded administrative access
• Unauthorized access
• Poorly separated inter-container network
traffic
• Mixing of workload sensitivity levels

Dr. Chuck Easttom, M.Ed, MSDS, MBA, MSSE, Ph.D.2, D.Sc.

FedRamp – Container Vulnerability Scanning

Federal Risk and Authorization Management Program
The following requirements are supplemental and are applicable for all
systems implementing container technologies:
• Hardened Images
• Container Build, Test, and Orchestration Pipeline
• Vulnerability Scanning for Container Image
• Security Sensors
• Registry Monitoring
• Asset Management and Inventory Reporting for Deployed Containers

https://www.fedramp.gov/assets/resources/documents/Vulnerability_Sc
anning_Requirements_for_Containers.pdf

	Slide 1: Containers
	Slide 2: Case Study 9
	Slide 3: DoD DevSecOps and Containers
	Slide 4: DoD DevSecOps and Containers
	Slide 5: What is a container?
	Slide 6: What is a container?
	Slide 7: Containers
	Slide 8: Containers
	Slide 9: The original container
	Slide 11: Docker Architecture
	Slide 13: Docker Architecture I
	Slide 14: Docker Architecture II
	Slide 15: Docker Architecture III
	Slide 16: Docker Images
	Slide 17: Building a Docker Image
	Slide 18: Installing Docker
	Slide 19: Alpine Linux
	Slide 20: Docker Commands
	Slide 21: Dockerize a Program
	Slide 22: Containers as Services
	Slide 23: Running a Container in the Background
	Slide 24: Entering a Container
	Slide 25: Logging and Events
	Slide 26: Volumes and Storage
	Slide 27: Resource Constraints
	Slide 28: Constraints and Cgroups
	Slide 29: Statistics
	Slide 30: Grafana – Monitoring Docker containers
	Slide 31: Where images come from
	Slide 32: The Significance of Container Scanning and Securing Container Images
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Kubernetes
	Slide 37: Kubernetes
	Slide 38: Kubernetes
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Overview
	Slide 44: Basic Use
	Slide 45: Chart Structure
	Slide 46: Outline of a Simple Chart
	Slide 47: Creating a Chart Repository
	Slide 48: Open Container Initiative (OCI)
	Slide 49: Open Container Initiative (OCI)
	Slide 50: Platform One
	Slide 51: NIST Special Publication 800-190
	Slide 52: NIST Special Publication 800-190
	Slide 53: FedRamp – Container Vulnerability Scanning

