
Lesson 3

Diagrams and Models including Sysml

Case 3

This system was developed to handle case files for
the FBI. It was eventually abandoned while still in the
development stage, after costing 170 million dollars.
It was considered so poorly designed and inadequate
as to be completely unusable in real world
conditions. It failed even the most basic systems and
failed to meet basic requirements. A detailed report
regarding the project's failure listed several problems
including:

1. Repeated changes to specifications.

2. Poor architectural decisions.

3. Scope creep.

4. Managers of the project with little or no computer
science training.

What is
SysML?
• A graphical modelling language in response to

the UML for Systems Engineering RFP developed
by the OMG, INCOSE, and AP233

• a UML Profile that represents a subset of
UML 2 with extensions

• Supports the specification, analysis, design,
verification and validation of systems that
include hardware, software, data, personnel,
procedures, and facilities

• Supports model and data interchange via XMI
and the evolving AP233 standard (in-process)

SYSML Summary

4

Structure
system hierarchy,
interconnection

Behavior
function-based
behavior, state-
based behavior

Properties
parametric models,

time property

Requirements
requirements

hierarchy,
traceability

Verification
test cases,

verification results

TISYSE 5

DoDAF
DoD
Architectural
Framework
across
multiple
levels
(Zachman
And MoDAF
are similar)

UPDM
Unified

Modeling
Language

 (UML)
 Profile

for
DoDAF

and
ModAF

SOA
Architecture

based
on

services

SysML
UML Extension

 for Systems
Engineering

FEA-DEA-BEA
Federal and Defense

Enterprise
Architectures

SCA
Component Interface

Description

SCBA
FEA extension to

Services and
Components

SDF
Service Interface

Descriptions

Layers

Enterprise
Architects

Software
Architects

Program
Architects

System
Architects

And
Engineers

MDA
UML Models
For software
Architecture,

Components and
interfaces

Developers Testbeds such as Federated Development and Certification Environment (FDCE)
including Live Systems, Modules, Components ,Services and Simulations

SysML Context

Services - EnterpriseSystems - Operations

SYSML DIAGRAM TAXONOMY

SYSML
DIAGRAMS

• Requirement diagram represents text-based requirements and their relationship
with other requirements, design elements, and test cases to support
requirements traceability (not in UML)

• Activity diagram represents behavior in terms of the order in which actions
execute based on the availability of their inputs, outputs, and control, and how
the actions transform the inputs to outputs (modification of UML activity
diagram)

• Sequence diagram represents behavior in terms of a sequence of messages
exchanged between systems, or between parts of systems (same as UML
sequence diagram)

• State machine diagram represents behavior of an entity in terms of its transitions
between states triggered by events (same as UML state machine diagram)

• Use case diagram represents functionality in terms of how a system is used by
external entities (i.e., actors) to accomplish a set of goals (same as UML use case
diagram)

• Block definition diagram represents structural elements called blocks, and their
composition and classification (modification of UML class diagram)

• Internal block diagram represents interconnection and interfaces between the
parts of a block

• (modification of UML composite structure diagram)
• Parametric diagram represents constraints on property values, such as F [m * a,

used to support engineering analysis (not in UML)

The four
pillars of
sysml

https://www.omgsysml.org/what-is-
sysml.htm

Blocks are
Basic

Structural
Elements

Block
Definition
Diagram

Internal
Block
Diagram

TISYSE 12

Internal Block Diagram Example

Control signals

TISYSE 13

Activity Diagram Notation

Modeling
methodology

Modeling starts at the
highest level of the
system by modeling the
different top-level
components.

Next, a behavioral SysML use
case diagram is presented, to
determine the different case
scenarios present in the
system.

Following that, low level
components and illustrate
their relative aspects, such as
behavior expressed via SysML
diagrams such as state and
sequence diagrams.

Use Case Diagram (Naval based anti aircraft gun)

Activities

• Activity diagrams are graphical
representations of workflows of stepwise
activities and actions

• Activity used to specify the flow of
inputs/outputs and control, including
sequence and conditions for coordinating
activities

• Secondary constructs show responsibilities for
the activities using swim lanes

• SysML extensions to Activities
• Support for continuous flow modeling
• Support probabilistic choice
• Alignment of activities with Enhanced

Functional Flow Block Diagram

Activity Diagram

Rounded Rectangles represent actions;

diamonds represent decisions;

bars represent the start (split) or end (join) of concurrent

activities;

a black circle represents the start (initial node) of the

workflow;

an encircled black circle represents the end (final node)

Do something

Analysis Model of
Vehicle

Start Up Vehicle

Drive Vehicle

Shut Down Vehicle

AD Operate Vehicle

• SysML additions on this chart

• «streaming» activities consume inputs
after initialization

• «continuous» flows

Analysis
Model of

Vehicle

19

select first gear

move from stopped

Steer Vehicle

coast

Shift Gear

Accelerate Vehicle

Brake Vehicle

Operate Cruise Control

stopped

AD Drive Vehicle

•SysML additions on
this chart
•«streaming» activities

consume inputs after
initialization
•«continuous» flows

Block definition diagram

BLOCK
DEFINITION
DIAGRAM

ELEMENTS

ELEMENTS

PORTS

25

Internal Block Diagram for Vehicle

• Non-Atomic Ports
• I/O is specified using FlowSpecification
• FlowSpecification consists of properties

stereotyped «FlowProperty»
• isConjugate promotes reuse of

flowSpecifications

• Atomic FlowPorts
• In this case the port is directly typed by the item type

(Block or ValueType)

• Direction property specify the direction of flow

ibd [Block] Automotive Domain

«Block»
Automotive Domain

«BlockProperty»
Cargo : Baggage

«BlockProperty»
Env : Environment

«BlockProperty»
FO : Foreign Object

«BlockProperty»
Sat : Satellite

«BlockProperty»
Wthr : Weather

«BlockProperty»
Rd : Road

«BlockProperty»
Veh : Vehicle

Driver

Maintainer

Passenger

26

IBD for Vehicle

• Non-Atomic Ports
• I/O is specified using FlowSpecification

• FlowSpecification consists of properties stereotyped
«FlowProperty»

• isConjugate promotes reuse of flowSpecifications

• Atomic FlowPorts
• In this case the port is directly typed by the

item type (Block or ValueType)
• Direction property specify the direction of flow

ibd [Block] Vehicle [High Level Systems]

«Block»
Vehicle

«BlockProperty»
BodySys : Body

Subsystem

«BlockProperty»
BrakeSys : Brake

Subsystem

«BlockProperty»
CC Sys : Cruise Control

System

«BlockProperty»
ChasSys : Chassis

Subsystem

«BlockProperty»
InteriorSys : Interior

Subsystem

«BlockProperty»
LightSys : Lighting

Subsystem

«BlockProperty»
PowSys : Power

Subsystem

«BlockProperty»
SteerSys : Steering

Subsystem

«BlockProperty»
ElecSys : Electrical

Subsystem

Body-Chassis

Body-Lighting

Power-Chassis

Brake-CC System

Power-CC System

Steer-Chassis

Body-Interior

Interior-Lighting

Brake-LightingChassis-Brake

Elec-Lighting

Power-Elec

CCSystem-Elec

Interior-Elec

IBD COMPONENTS

SEQUENCE
DIAGRAM

SEQUENCE
DIAGRAM

SEQUENCE
DIAGRAM

SEQUENCE
DIAGRAM

Modeling
Approaches &
Methods

• Data Modeling
• Entity-relationship diagrams (ERDs)
• Higraphs

• Process Modeling
• Data flow diagrams (DFDs)
• IDEF0
• N2 charts

• Behavior Modeling
• Function flow block diagrams (FFBDs)
• Behavior diagrams (BDs)
• State-transition diagrams (STDs)
• Statecharts
• Control flow diagrams (CFDs)
• Petri nets (PNs)

• Object-oriented Modeling
• Object modeling technique (OMT)
• Real-time object-oriented modeling (ROOM)

Data Flow
Diagrams

A structured analysis technique that employs a set of
visual representations of the data that moves through
the organization, the paths through which the data
moves, and the processes that produce, use, and
transform data.

Differences
Between
DFDs
and
Flowcharts

9-34

Processes on DFDs can operate in parallel (at-
the-same-time)

• Processes on flowcharts execute one at a time

DFDs show the flow of data through a system

• Flowcharts show the flow of control (sequence and
transfer of control)

Processes on a DFD can have dramatically
different timing (daily, weekly, on demand)

• Processes on flowcharts are part of a single program with
consistent timing

Types of DFDs

• Current - how data flows now

• Proposed - how it is intended to flow in the future

• Logical – The flow of the data

• Physical – The flow of the physical system

• Partitioned physical - system architecture or high-level
design

Levels of Detail

• Context level diagram - shows just the inputs and outputs
of the system

• Level 0 diagram - decomposes the process into the major
subprocesses and identifies what data flows between
them

• Child diagrams - increasing levels of detail

• Primitive diagrams - lowest level of decomposition

Recommended
Progression
• Current logical diagrams

• start with context level
• decompose as needed for understanding

• Proposed logical diagrams
• start at level where change takes place
• decompose as far as possible

• Current physical diagrams
• at level of change

• Proposed physical diagrams
• same levels as proposed logical
• lower levels become design

Four Basic
Symbols

Source/
Sink

Data Flow

#

Process
Data Store

DFD Mechanics

• Data Flow

• Depicts data that are in motion and moving
as a unit from one place to another in the
system.

• Drawn as an arrow

• Select a meaningful name to represent the
data

DFD Mechanics

• Data Store

• Depicts data at rest

• May represent data in

• File folder

• Computer-based file

• Notebook

• Drawn as two horizontal parallel lines

• The name of the store as well as the
number are recorded in between lines

DFD Mechanics

DFD Mechanics

• Source/Sink

• Depicts the origin and/or
destination of the data

• Sometimes referred to as an
external entity

• Drawn as a square symbol

• Name states what the external
agent is

• Because they are external,
many characteristics are not of
interest to us

DFD Syntax

Context Level
Diagram

Decomposition
of DFDs

Levels

Level 1

Level 2

Data Flow
Diagram

• https://docs.microsoft.co
m/en-us/archive/msdn-
magazine/2006/november/u
ncover-security-design-
flaws-using-the-stride-
approach

Data Flow
Diagram
Semantics

Process

Customer

Banking

Transactions

Process

Customer

Banking

Transactions

Process

Customer

Banking

Transactions

These are three equally valid representations of a process.

Note a process begins with a verb, just as functions or activities

do in IDEF0.
Customer Notice:

Main Menu

Selection

This is an example of a “data

flow”. Note, it is a noun

phrase and attached to an arc.

Double-headed

arcs signify dialog

between functions

Context
(External
Systems)
Diagram in
DFD

CUSTOMERS

BANK SERVICE

PERSONNEL

BANK

COMPUTER

Customer
Notices

(CN)Completed
Transaction

Prodcuts

Customer
Inputs

System
Status
Report

Account
Transaction

Data
Completed
Trans. Info.

Bank's

Acct. Info

Bank
Supplies

Employee
ID Info

PROVIDE

AUTOMATED

TELLER

MACHINE

SERVICES FOR

CUSTOMERS

Data Flow
Diagramming
Rules

• Process

A. No process can have
only outputs (a
miracle)

B. No process can have
only inputs (black
hole)

C. A process has a verb
phrase label

• Data Store

D. Data cannot be
moved from one
store to another.

E. Data cannot move
from an outside
source to a data
store

F. Data cannot move
directly from a data
store to a data sink

G. Data store has a
noun phrase label

Data Flow
Diagramming

Rules

• Source/Sink

H. Data cannot move directly from a source to a sink

I. A source/sink has a noun phrase label

• Data Flow

J. A data flow has only one direction of flow between
symbols.

K. A fork means that exactly the same data go from a
common location to two or more processes, data
stores or sources/sinks

Data Flow
Diagramming
Rules

Microsoft’s Tool

Ref. AND AND

1.1

Perform

System Level

Design Activities

1.2

Perform

Subsystem

Level Design ...

1.3

Perform

Component

Level Design ...

2

Perform

Integration

Activities

Concurrent

Function Flow Block Diagrams

Ref.

1

Perform Design

Activities

2

Perform

Integration

Activities

Ref.

Series

• Series

• Concurrent

• Selection

• Multiple-exit function

Basic

• Iteration

• Looping

• Replication

Enhanced

Behavior Diagrams

@

@

&*

&*

@*

@*

Update

Position

Update

Display

Detection

Data
Current

Track

Updated

Track

Updated

Display

Sequence

Update

Position

Update

Display

Updated

Track

Updated

Display

All tracks

@*

@*

All tracks

Current

Track

@*

@*

All tracks

Detection

Data

@*

@*

All detections

Iteration

Update

Position

Update

Display

Detection

Data
Current

Track

Dropped

Track

Updated

Display

Selection

+

Updated

Track
Track Update

No Track

Update

Update

Position
Update

Display

Detection

Data

Current

Track

Updated

Track

Updated

Display

Concurrency

&

&

Update

Position

Update

Display

Detection

Data
Current

Track

Updated

Track

Updated

Display

Replication

Update

Position

Detection

Data
Current

Track

Looping

L

Updated

Track

Remaining

Detections

G

Detections

Depleted

Finite State Machines
• Finite state machines: discrete

valued inputs, outputs and
internal items
• Sequential: past inputs impact

current outputs (e.g., state-
transition diagram)

• Combinational: current
outputs characterized only
current inputs

• Continuous machines:
continuous and discrete inputs,
outputs and internal items

Continuous or

Analog Machines

Combinational

FSM

Sequential

FSM

Finite State

Machines (FSMs)

Machines

State-transition Diagram for ATM
IDLE

WAITING FOR

CUSTOMER

IDENTIFICATION

WAITING FOR

CUSTOMER’S

ACCESS CODE

WAITING FOR

CUSTOMER’S

CHOICE

DEPOSIT WITHDRAWL TRANSFER ACCOUNT

BALANCE

Cust. ID Presented

Process ID for Validity

Cust. ID Read

CN:”Enter Access Code”

Access Code Validated

CN:”Main Menu Choices”

Invalid Access Code

CN:”Please Re-enter”

3rd Invalid Access Code

CN:”Transaction Terminated”

Unread Cust. ID

CN:”ID Unreadable”

Event

Output

Other
Modeling

Languages

• We have already mentioned UML, DODAF and UAF will be
discussed in the next lesson. But there are other modeling
languages:

• Diagnostic Modeling Language

• Architecture Analysis & Design Language

• MARTE (Modeling and Analysis of Real-Time and Embedded
systems

• LML (Lifecycle Modeling Language) — Lightweight MBSE
language for full lifecycle modeling.

• SDL (Specification and Description Language) —
Telecommunications system modeling.

• SysADL (System Architecture Description Language) —
Architecture modeling for complex systems

Diagnostic
Modeling

Language

Diagnostic Modeling Language (DML) is a specialized modeling language used
in systems engineering—particularly in model-based diagnostics—to formally
describe how to detect, isolate, and identify faults in complex systems. It’s
essentially a structured way to encode diagnostic knowledge so that fault
detection and troubleshooting can be automated or semi-automated. This is
an XML-based format designed for interoperability between diagnostic
software and test execution environments from different vendors.

• Key Features
• Component Modeling

• Models physical or logical parts of the system and their relationships.
• Fault Propagation Modeling

• Defines how a fault in one component can cause changes in other
components’ behavior.

• Observation Mapping
• Connects measurable signals (sensor readings, alerts, performance

metrics) to potential failure modes.
• Test and Procedure Modeling

• Specifies what diagnostic tests are available, what they measure, and
what outcomes mean.

• Supports Multiple Diagnostic Strategies
• Can be used for model-based reasoning, rule-based systems, or hybrid

diagnostic frameworks.

Diagnostic Modeling Language

Architecture Analysis &
Design Language (AADL)

• Architecture Analysis & Design Language
(AADL) is a standardized modeling language
(defined by SAE AS5506) used to describe and
analyze the architecture of complex, embedded,
real-time systems—particularly where hardware,
software, and their interactions must be modeled
together.

• It’s especially valuable in avionics, aerospace,
automotive, and defense because it supports
early verification of performance, timing, safety,
and reliability before the system is built.

Architecture Analysis & Design Language (AADL)

•Component-Based
•AADL models systems as hierarchies of components:

•Software: threads, processes, subprograms, data.
•Hardware: processors, memory, devices, buses.

•Formal Semantics
•Unambiguous meaning for each construct, enabling automated analysis.

•Annex Mechanism
•Allows extensions for specific analyses (e.g., safety, behavior, fault modeling). Examples: Error Model Annex (for
reliability/safety), Behavior Annex (for state machines).
•Property Sets

•Attach quantitative and qualitative attributes to components (e.g., CPU speed, WCET — Worst-Case Execution Time,
failure rate).

•Tool Support
•Tools like OSATE (Open Source AADL Tool Environment) allow model creation, consistency checking, and analysis.

•https://www.sei.cmu.edu/projects/architecture-analysis-and-design-language-aadl/

MARTE
(Modeling

and Analysis
of Real-Time

and
Embedded

systems

MARTE (Modeling and Analysis of
Real-Time and Embedded systems

MARTE is organized into several sub-profiles, including:

Time — modeling and reasoning about time.

NFP (Non-Functional Properties) — expressing measurable properties.

HRM (Hardware Resource Modeling) — describing hardware architecture.

SRM (Software Resource Modeling) — describing software execution and services.

GCM (Generic Component Modeling) — reusable component structures.

SAM (Schedulability Analysis Modeling) — linking models to performance analysis.

Lifecycle Modeling Language (LML)

Lifecycle Modeling Language (LML) is a simplified, standardized modeling language created to
support the entire system lifecycle—from concept and requirements through design,
verification, operations, and disposal—while being easier to learn and apply than traditional
modeling languages like SysML. It’s intended for Model-Based Systems Engineering (MBSE),
program management, and decision support, with a focus on clarity, usability, and integration.

Lifecycle
Modeling

Language
(LML)

Key Characteristics
• Core Ontology

• LML defines a small, consistent set of entity types (about a dozen core ones)
such as:

• Action (tasks, activities, functions)
• Asset (hardware, software, facilities)
• Requirement
• Risk
• Decision
• Verification
• Concern (issues, opportunities)
• Interface

• This core vocabulary applies across the entire lifecycle.
• Integrated Views

• Functional: what the system does (Actions).
• Physical: what the system is (Assets).
• Parametric: performance, cost, schedule data.
• Traceability: links between requirements, risks, designs, and verifications.

• Consistency
• All diagrams and tables come from the same underlying model—no

duplication.
• Ensures updates in one view are reflected everywhere.

• Ease of Use
• Designed to reduce learning curve.
• Works well with tools like Innoslate (which natively implements LML).

SDL
(Specification
and
Description
Language)

• Specification and Description Language (SDL) is a formal, standardized
modeling language (ITU-T Z.100 standard) used primarily for specifying,
designing, simulating, and validating real-time, event-driven, and
distributed systems—especially in telecommunications, networking, and
embedded control systems. It combines a formal mathematical basis
with a graphical notation so that models can be both precise and human-
readable.

SDL
(Specification

and
Description
Language)

Basic Concepts in SDL

• System: The top-level entity being modeled.

• Block: A subsystem within the system.

• Process: A sequential thread of control, modeled as an
EFSM.

• Signal: A message sent between processes or from the
environment.

• Channel: The communication path for signals.

• Procedure: Reusable sequence of actions within a process.

• Timer: Built-in concept for modeling time-based event

SysADL (System
Architecture
Description Language)

SysADL is a Software Architecture
Description Language (ADL) implemented
as a SysML profile. It extends the
modeling capabilities of the Systems
Modeling Language (SysML) to provide
robust, standardized support for
architectural modeling in software-
intensive systems.

	Slide 1: Lesson 3
	Slide 2: Case 3
	Slide 3: What is SysML?
	Slide 4: SYSML Summary
	Slide 5
	Slide 6: SysML Diagram Taxonomy
	Slide 7: Sysml diagrams
	Slide 8: The four pillars of sysml
	Slide 9: Blocks are Basic Structural Elements
	Slide 10: Block Definition Diagram
	Slide 11: Internal Block Diagram
	Slide 12: Internal Block Diagram Example
	Slide 13: Activity Diagram Notation
	Slide 14: Modeling methodology
	Slide 15: Use Case Diagram (Naval based anti aircraft gun)
	Slide 16: Activities
	Slide 17: Activity Diagram
	Slide 18: Analysis Model of Vehicle
	Slide 19: Analysis Model of Vehicle
	Slide 20: Block definition diagram
	Slide 21: Block definition diagram
	Slide 22: Elements
	Slide 23: Elements
	Slide 24: Ports
	Slide 25: Internal Block Diagram for Vehicle
	Slide 26: IBD for Vehicle
	Slide 27: IBD Components
	Slide 28: Sequence diagram
	Slide 29: Sequence diagram
	Slide 30: Sequence diagram
	Slide 31: Sequence diagram
	Slide 32: Modeling Approaches & Methods
	Slide 33: Data Flow Diagrams
	Slide 34: Differences Between DFDs and Flowcharts
	Slide 35: Types of DFDs
	Slide 36: Levels of Detail
	Slide 37: Recommended Progression
	Slide 38: Four Basic Symbols
	Slide 39: DFD Mechanics
	Slide 40: DFD Mechanics
	Slide 41: DFD Mechanics
	Slide 42: DFD Mechanics
	Slide 43: DFD Syntax
	Slide 44: Context Level Diagram
	Slide 45: Decomposition of DFDs
	Slide 46
	Slide 47: Data Flow Diagram
	Slide 48: Data Flow Diagram Semantics
	Slide 49: Context (External Systems) Diagram in DFD
	Slide 50: Data Flow Diagramming Rules
	Slide 51: Data Flow Diagramming Rules
	Slide 52: Data Flow Diagramming Rules
	Slide 53: Microsoft’s Tool
	Slide 54: Function Flow Block Diagrams
	Slide 55: Behavior Diagrams
	Slide 56: Finite State Machines
	Slide 57: State-transition Diagram for ATM
	Slide 58: Other Modeling Languages
	Slide 59: Diagnostic Modeling Language
	Slide 60: Diagnostic Modeling Language
	Slide 61: Architecture Analysis & Design Language (AADL)
	Slide 62: Architecture Analysis & Design Language (AADL)
	Slide 63: MARTE (Modeling and Analysis of Real-Time and Embedded systems
	Slide 64: MARTE (Modeling and Analysis of Real-Time and Embedded systems
	Slide 65: Lifecycle Modeling Language (LML)
	Slide 66: Lifecycle Modeling Language (LML)
	Slide 67: SDL (Specification and Description Language)
	Slide 68: SDL (Specification and Description Language)
	Slide 69: SysADL (System Architecture Description Language)

