n T+

+

-

4 - -
| I
P’ — r
| - 11
: ./"
-
1 i . | f
v {

P 4. i/

DjagramsianeiVieeelsincluc

Case 3

This system was developed to handle case files for
the FBI. It was eventually abandoned while still in the
development stage, after costing 170 million dollars.
It was considered so poorly designed and inadequate
as to be completely unusable in real world
conditions. It failed even the most basic systems and
failed to meet basic requirements. A detailed report
regarding the project's failure listed several problems
including:

1. Repeated changes to specifications.
2. Poor architectural decisions.
3. Scope creep.

4. Managers of the project with little or no computer
science training.

What is
SysML<e

* A graphical modelling language in response to
the UML for Systems Engineering RFP developed
by the OMG, INCOSE, and AP233

* a UML Profile that represents a subset of
UML 2 with extensions

» Supports the specification, analysis, design,
verification and validation of systems that
include hardware, software, data, personnel,
procedures, and facilities

e Supports model and data interchange via XM|
and the evolving AP233 standard (in-process)

SYSML Summary

5 @ a 0 Q

Structure Behavior Properties Requirements Verification
system hierarchy, function-based parametric models, requirements test cases,
interconnection behavior, state- time property hierarchy, verification results
based behavior traceability

—_———— e

: Systems - Operations i L Services - Enterprise
Layers FEA-DEA-BEA
Federal and Defense
Enterprise Enterprise
Architects Architectures
DoDAF UPDM v
DoD Unified SCBA
. Modeling .
Architectural FEA extension to
Program Framework —|_ La(nUg'\leaje Services and
Architects across Profile Components
multiple for SysML
levels UML Extensi
DoDAF xtension 0 SOA
System (zachman and y for Systems Architecture |€— , SDF
Y And MoDAF Engineering Service Interface
And are similar) ;i on Descriptions
n
Engineers services
MDA
UML Models —>
Software For software SCA
Architects Architecture,
< | Component Interface
Components and -
. Description
interfaces T
Developers Testbeds such as Federated Development and Certification Environment (FDCE)
including Live Systems, Modules, Components ,Services and Simulations
luding Live Systems, Modules, C ts,S d Simulat

SysML
Diagram

A

| R

Eehavior ! Requirement Structure
Diagram) Diagram Diagram
Activity Sequence State Machine Use Case Block Definition nternal Block Pack Di
Diagram Diagram Diagram Diagram Diagram Diagram ackage Liagram
.- L J- L B

Same as UM 2

§ Parametric
[Diagram

[1 Modified from UML 2
I---: Mew diagram ftype

SYSML DIAGRAM TAXONOMY

SYSML

DIAGRAMS

Requirement diagram represents text-based requirements and their relationship
with other requirements, design elements, and test cases to support
requirements traceability (not in UML)

Activity diagram represents behavior in terms of the order in which actions
execute based on the availability of their inputs, outputs, and control, and how
the actions transform the inputs to outputs (modification of UML activity
diagram)

Sequence diagram represents behavior in terms of a sequence of messages
exchanged between systems, or between parts of systems (same as UML
sequence diagram)

State machine diagram represents behavior of an entity in terms of its transitions
between states triggered by events (same as UML state machine diagram)

Use case diagram represents functionality in terms of how a system is used by
external entities (i.e., actors) to accomplish a set of goals (same as UML use case
diagram)

Block definition diagram represents structural elements called blocks, and their
composition and classification (modification of UML class diagram)

Internal block diagram represents interconnection and interfaces between the
parts of a block

(modification of UML composite structure diagram)

Parametric diagram represents constraints on property values, suchas F[m * g,
used to support engineering analysis (not in UML)

The four

pillars of
sysml

https://www.omgsysml.org/what-is-
sysml.htm

1. Structure

bdd [package] VehicleStructure [AES-Block Defintion (I;'I’l/
wbiocks whiocke
Lidsary A‘:‘h‘::k Uicary::£lec

Eloctonkc Controles tro.Hyd raslic
Processor iaialy Valve
\ d1 \' f
ahicke 1 L ahincke
I8 [tlock] Art-Lock ' .
nterny k Di» alos
Mo Blator use
wierface
ol Breke
Medulator

interaction

definition

r

sd ABS Actva SOQuU

ehavior

I mi:Brake I

state

l di:Traction I

machine

activity/ | Proveni

function

3

* W)

Modlate
Hrakingfesce

sendAcH)

Vihicke Systems Braking Sebaystem
Specification Specificasen
wrOgeomont s stequirement
SteppingDistance Asti-Lock¥P efermance

3. Requirements

‘Brakingfecce
Equation
arelyrital

:Dstancel quation
L L

tAccelm ation
t quation

Melocin® quation

4. Parametrics

Note that the Package and Use Case diagrams are not shown in this example, but are respectively part of the structure and behavior piliars

» Provides a unifying concept to describe the structure of an
element or system <blockn

— Hardware BrakeModulator
— Software

B | O C |<S G re — Data allocatedFrom

«activity»Modulate

I — Procedure BrakingForce
BOSIC — Facility Jalles
STFUCTU rdl — Person DutyCycle: Percentage
Ele me nTS « Multiple compartments can describe the block characteristics
— Properties (parts, references, values)
— Operations

— Constraints
— Allocations to the block (e.g. activities)
— Requirements the block satisfies

TISYSE 9

Block Block Definition Diagram

Definition bdd [package] VVehicleStructure [ABS-Block Definition Diagram]
Diagram <block» o

Library:: Anti-Lock

Electronic

Processor Controller

‘ d1 | m1
2 Y

31
t{blﬂtfk}} «block» «block»
Traction Brake Sensor
Detector Modulator
Definition

— Block is a definition/type
— Captures properties, etc.
— Reused in multiple contexts

Internal Block Diagram

ibd [block] Anti-LockCaontroller
[Internal Block Diagram]

Usage | ——=" 7 |
| n'l'e rngl — Part_ Is the usage in a co-sensor —|:]__5_1_S_e_n:acir__i
particular context Interface
BlOC |< - T}’p‘?d b},’ a block :gd‘g:t?g:;?n
— Also known as a role niertace

Diagram) e

Internal Block Diagram Example

Compressor
Compressor
| out : Fluid | out :Fluid
chamber ; Tank out :Valve
Fluid Fluid
. . in : Fluid . | c:1/0 .
F|Llid] |
- out : Fluid
ve:V : ¢ :I/O
pass :Valve —_—
ey |

L in : Fluid
Fluid[l

1 out ; Fluid

in:Fluid [in :Fluid | out:Fluid Lin :Fluid L
: | 1 1
i Valve — :Pump
Fluid Fluid c:1/O
I e:1fO |

| 11O

. ‘ - | ——{— /f:Digital IF control signals

VOR 0w 1O o 10

] /0

out : Fluid

Activity Diagram Notation

‘ Activity ‘

act MonterTracton)

Whee!Revs
Initial \ Cato
\ alculate
Node i —=== Wheel
| Velocity
L —1:— ~—— | Fork
—

Control — =
Flow

Spesdohput

| -,

-

. Action

 Angularielocily

= Calzulate

- Traction

2 | spens

-,
x

| Calculate Car

Velocity I
IK\- -I.l'

T,

e

| Decision

/ Moss of
of tracticn]

[else]

Object
Flow

Frequency

=
L

Modulation

Fre

quUENCY

oy
Calzulate
D Modulation J:l =

-

Flow

.

1 Activity

Parameter

Mode

| Pln

Final

MNode

et
s
-

%
B

Activity
Final
MNode

® 00

Modeling starts at the
highest level of the
system by modeling the
different top-level
components.

° Next, a behavioral SysML use
Mo d e I I n g case diagram is presented, to
determine the different case

scenarios present in the

methodology

Following that, low level
components and illustrate
their relative aspects, such as
behavior expressed via SysML
diagrams such as state and
sequence diagrams.

Use Case Diagram (Naval based anti aircraft gun)

«actors

Naval Anti-Aircraft Gun System

Fire Contrgl-Sfficar

1)

largets

«actors

AN

Gunner f@

wactors

L

v & H_in

at / ROE Check

———

Evaluate Thre

Ammunit#a..‘__’:.__c_u_i_ﬁ

& Stabilizat

N = 7
,fs

qging UL
e
s Adcinn Engagerie | Sele)
-

e -

\ CeByitem Hedith Mertforin
Cease Fire ['l Si ation

b

qn

«actor»

Co

WSystem (CN

1S)

«actors

or Suite
(r/EQ/IR)

«actors

on Report

@nce Crew

g & BITE

@

* Activity diagrams are graphical
representations of workflows of stepwise
activities and actions

 Activity used to specify the flow of
inputs/outputs and control, including
sequence and conditions for coordinating
activities

e Secondary constructs show responsibilities for
the activities using swim lanes

AcTtivities

* SysML extensions to Activities
* Support for continuous flow modeling
e Support probabilistic choice

* Alignment of activities with Enhanced
Functional Flow Block Diagram

AcTtivity Diagram

Rounded Rectangles represent actions; [Do something

diamonds represent decisions; <>

bars represent the start (split) or end (join) of concurrent

activities;
a black circle represents the start (initial node) of the ‘
workflow;

an encircled black circle represents the end (final node) @

AD Operate Vehicle‘

[Start Up Vehicle}

[Drive Vehicle }

[Shut Down Vehicle}

v
O

Analysis Model of
Vehicle

e SysML additions on this chart

* «streaming» activities consume inputs
after initialization

e «continuous» flows

*SysML additions on

. this chart
AﬂOlYSIS e «streaming» activities
consume inputs after
MOdel Of initialization

vehiC|e e «continuous» flows

Block definition diagram

«actor»

Naval Anti-Aircraft Gun System

Betectlgrgets

«actors \

Gunner J’g

«actors

- i - @MS/Link-16)

— =

=at / ROE Check

Evaluate Th

g TS

, “4'.'

Ammunit‘.ar.,_’glg_u_u____

«actors

1S)

Co Wiystem (cn

«actors

r Suite
(r/EQ/IR)

on Report «actors

9

ch Crew

g & BITE

Mode

IR

BLOCK

DEFINITION
DIAGRAM

ablocks
Generator Chip

prov
prov
prov
prov

operations
sactionesAdjust Signal Waveform Amplitude ()
gactvitysControl and Maintain Amplitude ()
gactvitysEnhance Frequency ()
gactivitysGenerate Waveform ()

flow properties

In A/C Power Source
out Sine Wave

out Square VWave
out Triangle Wave

parts

Comparator Circuit (Schmitt Trigger)
Diode Wave Shaper Circuit
Integrator Circuit

Transformer

Voltage Requlator

ELEMENTS

Association

Inheritance

Realization /
Implementation

Dependency

Aggregation

Composition

ELEMENTS

Association

Inheritance

Realization /
Implementation

Dependency

Aggregation

Composition

PORTS

ablocks
block
full port name:port-block
] Block «blocks
[FulPort «fullPort»

[] Proxy Port wproxyPorts

Interface
|:| winterfaceBlock::
Block

Internal Block Diagram for Vehicle

* Non-Atomic Ports

/O is specified using FlowSpecification
FlowSpecification consists of properties

ibd [Block] Automotive DomainJ

stereotyped «FlowProperty»
isConjugate promotes reuse of

flowSpecifications

Atomic FlowPorts

In this case the port is directly typed by the item type
(Block or ValueType)

Direction property specify the direction of flow

IBD for Vehicle

ibd [Block] Vehicle [High Level Systems]J

Steer-Chassis|

Body-Interior

Body-Chassis Interior-Lighting

Body-Lighting

Chassis-Brake Brake-Lighting

Interior-Elec

Brake-CC System

Power-Chassis

-\ Power-CC System CCSystem-Elec
/\ Power-Elec
 Non-Atomic Ports e Atomic FlowPorts
* 1/Ois specified using FlowSpecification * In this case the portis directly typed by the
* FlowSpecification consists of properties stereotyped item type (Block or ValueType)

«FlowProperty»

« isConjugate promotes reuse of flowSpecifications * Direction property specify the direction of flow

IBD COMPONENTS

CMNT Zomment

| Picture

% Mote Callout

{1 Tag

Fart

..........

Feference

..........

SEQUENCE

DIAGRAM

Call Event (call operation activity
asszigned to Automobile System. Like a

service Reguest)

Driver Automaebile System _
E lgnition On E ,f’f
..q_l Start Engine
E «Pars)
: Provide
' Power
: Turn Vehicle : _
- ! Turn Yehicle
Steering Angle | Wheels
i lgnition 0Ff | LT
; ' Stop Engine

Signal Event |

SEQUENCE

DIAGRAM

:Computer

checkEmail

Server

sendUnsentE mail

newEmail

response

é

[newEmail] downloadEmail

delete OIdE mail

- —

Lifeline «lifeline:

|:| Execution

Hone
Specification

Alternative
Comhbined wfragments
Fragment

SEQUENCE

DIAGRAM

Loop
E Combined wfragments
Fragment

Dptional
E| Combined wiragments
Fragment

Farallel
Combined «fragments
Fragment

SEQUENCE

DIAGRAM

Farallel

Zomhbined wfragments
Fragment
Interaction

Mone
lse
Create Object

Mone
Message
Diestroy

Mone
Ohject
Found MMEessage

1

hessage E

Lost Message tmessages

Synchronous

TMessagas:
hessage 8

Agynchronous

wmMessdges
MEessage c

Modeling
Approaches &
Methods

* Data Modeling
* Entity-relationship diagrams (ERDs)
* Higraphs
* Process Modeling
* Data flow diagrams (DFDs)
* |DEFO
* NZ2charts
* Behavior Modeling
* Function flow block diagrams (FFBDs)
Behavior diagrams (BDs)

State-transition diagrams (STDs)

Statecharts

Control flow diagrams (CFDs) .
s Petri nets (PNs) N

* Object-oriented Modeling
* Object modeling technique (OMT)

* Real-time object-oriented modeling (ROOM) ' (

,and

visual representations of the data that moves through
the organization, the paths through which the data

moves, and the processes that produce, use

transform data.

Data Flow
Diagrams

-

'
>
&

lllllllll

.
.
:
'
'
.

9
'
'
'
'

—

L -
- - - - o .
-

*
’
.
.
-
.
:
:
)
-
1
1
.
1
-

,,,,,,,
.........

-__.L----
'
'
]
'

- - -

Processes on DFDs can operate in parallel (at-

the-same-time)

e Processes on flowcharts execute one at a time

DFDs show the flow of data through a system

e Flowcharts show the flow of control (sequence and
transfer of control)

Processes on a DFD can have dramatically

different timing (daily, weekly, on demand)

e Processes on flowcharts are part of a single program with
consistent timing

Types ot DFDs

e Current - how data flows now

Proposed - how it is intended to flow in the future

Logical — The flow of the data

Physical — The flow of the physical system

Partitioned physical - system architecture or high-level
design

Levels of Detall

* Context level diagram - shows just the inputs and outputs
of the system

 Level O diagram - decomposes the process into the major
subprocesses and identifies what data flows between
them

 Child diagrams - increasing levels of detail

* Primitive diagrams - lowest level of decomposition

Recommended
Progression

Current logical diagrams
 start with context level
* decompose as needed for understanding
Proposed logical diagrams
* start at level where change takes place
e decompose as far as possible
Current physical diagrams
e atlevel of change
Proposed physical diagrams
e same levels as proposed logical
* |ower levels become design

Four Basic
Symbols

Source/ Data Flow

Sink

(H#]
| Data Store
Process

DFD Mechanics

e Data Flow

* Depicts data that are in motion and moving
as a unit from one place to another in the
system.

* Drawn as an arrow

e Select a meaningful name to represent the
data

DFD Mechanics

* Data Store
* Depicts data at rest
* May represent data in
* File folder
* Computer-based file
* Notebook
* Drawn as two horizontal parallel lines

* The name of the store as well as the
number are recorded in between lines

DFD Mechanics

* Process

* Depicts work or action performed
on data so that they are
transformed, stored or distributed

* Drawn as a circle

e Number of process as well as
name are recorded

DFD Mechanics

Depicts the origin and/or
destination of the data

Sometimes referred to as an
external entity

Drawn as a square symbol

Name states what the external
agent is

Because they are external,
many characteristics are not of
interest to us

DFD Synfax

* Context Diagram

* A data flow diagram (DFD) of the scope of an organizational
system that shows the system boundaries, external entities
that interact with the system and the major information
flows between the entities and the system

* Level-O Diagram

e Adata flow diagram (DFD) that represents a system’s major
processes, data flows and data stores at a higher level

Context Leve] Just one process

All sources and sinks that provide data to or receive

Di(]gr(] 'm data from the process

Major data flows between the process and all
sources/sinks

No data stores

Decomposition
of DFDs

* Functional decomposition

* Act of going from one single system to
many component processes

e Repetitive procedure
* Lowest level is called a primitive DFD

* Level-N Diagrams

A DFD that is the result of n nested
decompositions of a series of sub
processes from a process on a level-0
diagram

Level 1

Daily Inventary
Depletion Amounts
Inventory Data

4.2
Aggregats
Goods Sold
and Inventory
Data

Daily Goods Goods Sold Data

Sold Amount

Sold and
[nventory
Data

Aggregated Data

Management
Reports

4.3
Prepare
Management
Reports

Levels

Level 2

Aggregated Data Formatted Data Management Reports
431 4.3.2

Format Print
Management Management
Reports Reports

Data Flow
Diagram

 https://docs.microsoft.co
m/en-us/archive/msdn-
magazine/2006/november/u
ncover-security-design-
flaws-using-the-stride-
approach

Item

Data flow

Data store

Process

Multi-process

|nteractors

Trust boundary

Symbol

Dne way arrow

Two parallel horizontal lines

Circle

Two concentric circles

Rectangle

Dotted line

Data Flow
Diagram
Semantics

Process Process) Process
Customer Customer Customer
Banking Banking Banking
Transactions \Transactions Transactions

These are three equally valid representations of a process.
Note a process begins with a verb, just as functions or activities
do in IDEFO.

Customer Notice:
\‘ Main Menu
/ Selection
Double-headed

arcs signify dia|og This is an example of a “data

between functions flow”. Note, it is a noun
phrase and attached to an arc.

Context

N\

(External

TOMERS

Systems)
Diagram in
DFD

Completed
Transaction
Prodcuts

System
Status
Report BANK S ICE
PE NNE
Cu ner Employee
Customer Inputs ID Infg
Notices gy
CN) SROVIDE
/ ‘\v ‘ Bank
G “‘@\ Supplies
ERVUC
§ \ Account
QLK Transaction
Completed Data
Bank's Trans. Info.
Acct. Info

AN
coﬁ%i

Data Flow
Diagramming
Rules

. Process

A.

No process can have
only outputs (a
miracle)

No process can have

only inputs (black
hole)

A process has a verb
phrase label

. Data Store

D. Data cannot be
moved from one
store to another.

E. Data cannot move
from an outside
source to a data
store

F. Data cannot move
directly from a data
store to a data sink

G. Data store has a
noun phrase label

. Source/Sink
H. Data cannot move directly from a source to a sink

. DOTO FlOW |. A source/sink has a noun phrase label
Diagramming
RUleS . JD.ata Flow

A data flow has only one direction of flow between
symbols.

K. A fork means that exactly the same data go from a
common location to two or more processes, data
stores or sources/sinks

. Data Flow (Continued)

L. Ajoin means that exactly the same
data come from any two or more

DGTG FlOW different processes, data stores or
Dl(]gr(] mm”’]g sources/sinks to a common location

M. A data flow cannot go directly back
?U|eS to the same process it leaves

N. A data flow to a data store means
update

O. A data flow from a data store means
retrieve or use

P. A data flow has a noun phrase label

Microsoft’s Tool

Help DiagramReader

File Edit View Settings Diagram Reports

« R B DX

Diagram 1 X
Search Stencils Q

4 @ Generic External Interactor

B Browser
—

——//—_ .I Dynamics CRM Mobile Client
Request

081 Dynamics CRM Outlook Clien
Azure Database =
for MySQL Browser “f i
loT Device
oo
@ Mobile Client
Response
R Element Properties a
Diagram

Name Diagram 1

Function Flow Block Diagrams

— l1 l2 E—
Perform Design Perform
Ref. e Activities s Integration e Ref
Activities
== Basic Series
e Series
e Concurrent
e Selection K Concurrent
. . . Perform
e Multiple-exit function — System Lo
esign Activities

[B 1.2 [2 B
[EI’] ha nced Perform Perform
Ref. —® Subsystem —® Integration

Lewel Design ... Activities
e |[teration - - - -
1.3
o I_OO in Perform
p g —? Component

o RepliCation Lewel Design ...

Behavior Diagrams

Detection Current Detection Current
Detection Current Bata l Trac ta Track
Bata Trac =)
| Upcla Up&ate
Upcah‘l; 1 N it HER
$bj. fon !
pdated] _ Track Update No Track Detections Remaining
> ack J Update Depleted Detections
|_Ypdate N pdate |~
dated . Ugdated i
Update Dispfay | ofaa isplay Updated
Displa P!
/ Track
EF&
Il tragks
Iteration g [Concurrency [Replication
ttections | —
Detection
All trd k Data

Detettion
Data

. \ Up M | on
G) \Qos%\ Allkracks] itio Upcl«a{e dated

ck
Djéplay G)
Z
C_Iyrrelr('lt Updated | Ypda
rac| Updated Dispfay
Display

Track

Bat:
pdated 2 Trac

C
T

v

ated
ack

oanted |_Ypdate)
pdate Displa
A)/

Display

Finite State Machines

e Finite state machines: discrete
valued inputs, outputs and
internal items

e Sequential: past inputs impact
current outputs (e.g., state-
transition diagram)

e Combinational: current
outputs characterized only
current inputs

e Continuous machines:
continuous and discrete inputs,
outputs and internal items

Machines

Continuous or Finite State
Analog Machines| | Machines (FSMs)

Combinational
FSM

Sequential
FSM

State-transition Diagram for ATM

-

Cust. ID Presented

=
T

-

Unread Cu

st. ID

Process ID for Validityy CN:"ID Unre

qdable”

WAITING FOR
CUSTOMER
IDENTIFICATION ™
Event Cust.ID Read Invalid Access Code
Output CN:"Enter Access Code”y CN:"Please Re-enter”
3rd Ipvalid Access Code

CUSTﬂMER’S

CN:”’Transaction Terminated”

ACCESS CODE

Access Code Validated

CN:”Main Menu Choices”

WAITING FOR
MER’S
CHOICE

=

CUSTO

DEPQOSIT

Y
WITHDRAWL

y
TRANSFER

'

ACCOUNT

BALANCE

* We have already mentioned UML, DODAF and UAF will be
discussed in the next lesson. But there are other modeling
languages:

O-'-her Diagnostic Modeling Language

* Architecture Analysis & Design Language

MOd ell n g * MARTE (Modeling and Analysis of Real-Time and Embedded

systems

I_O ﬂ g U O g eS * LML (Lifecycle Modeling Language) — Lightweight MBSE

language for full lifecycle modeling.

e SDL (Specification and Description Language) —
Telecommunications system modeling.

* SysADL (System Architecture Description Language) —
Architecture modeling for complex systems

Diagnostic Modeling Language (DML) is a specialized modeling language used
in systems engineering—particularly in model-based diagnostics—to formally
describe how to detect, isolate, and identify faults in complex systems. It’s
essentially a structured way to encode diagnostic knowledge so that fault
detection and troubleshooting can be automated or semi-automated. This is
an XML-based format designed for interoperability between diagnostic

DiO g n OSTiC software and test execution environments from different vendors.
Modeling
Language

Key Features
 Component Modeling
* Models physical or logical parts of the system and their relationships.
* Fault Propagation Modeling
* Defines how a fault in one component can cause changes in other
components’ behavior.
e Observation Mapping
* Connects measurable signals (sensor readings, alerts, performance
metrics) to potential failure modes.
e Test and Procedure Modeling
» Specifies what diagnostic tests are available, what they measure, and
what outcomes mean.
* Supports Multiple Diagnostic Strategies
e Can be used for model-based reasoning, rule-based systems, or hybrid
diagnostic frameworks.

Diagnostic Modeling Language

Diagnostic Modeling Language (DML) Example Diagram

Architecture Analysis &
Design Language (AADL)

e Architecture Analysis & Design Language
(AADL) is a standardized modeling language
(defined by SAE AS5506) used to describe and
analyze the architecture of complex, embedded,
real-time systems—particularly where hardware,
software, and their interactions must be modeled
together.

* |t's especially valuable in avionics, aerospace,
automotive, and defense because it supports
early verification of performance, timing, safety,
and reliability before the system is built.

Architecture Analysis & Design Language (AADL)

*Component-Based
*AADL models systems as hierarchies of components:
*Software: threads, processes, subprograms, data.
*Hardware: processors, memory, devices, buses.
*Formal Semantics
*Unambiguous meaning for each construct, enabling automated analysis.
*Annex Mechanism
*Allows extensions for specific analyses (e.g., safety, behavior, fault modeling). Examples: Error Model Annex (for
reliability/safety), Behavior Annex (for state machines).
*Property Sets
*Attach quantitative and qualitative attributes to components (e.g., CPU speed, WCET — Worst-Case Execution Time,
failure rate).
*Tool Support
*Tools like OSATE (Open Source AADL Tool Environment) allow model creation, consistency checking, and analysis.

*https://www.sei.cmu.edu/projects/architecture-analysis-and-design-language-aadl;

MARTE
(Modeling
and Analysis

of Real-Time
elale

Embedded
systems

MARTE — the Modeling and Analysis of Real-
Time and Embedded systems profile — is an
extension of UML (Unified Modeling
Language) specifically designed for
modeling, analyzing, and specifying real-
time, embedded, and performance-critical
systems. It’s standardized by the Object
Management Group (OMG) and is widely
used in MBSE (Model-Based Systems
Engineering) for domains like aerospace,
automotive, industrial automation, and
telecommunications.

MARTE (Modeling and Analysis of
Real-Time and Embedded systems

MARTE is organized into several sub-profiles, including:

Time — modeling and reasoning about time.

NFP (Non-Functional Properties) — expressing measurable properties.

HRM (Hardware Resource Modeling) — describing hardware architecture.

SRM (Software Resource Modeling) — describing software execution and services.

GCM (Generic Component Modeling) — reusable component structures.

SAM (Schedulability Analysis Modeling) — linking models to performance analysis.

Lifecycle Modeling Language (LML)

Lifecycle Modeling Language (LML) is a simplified, standardized modeling language created to
support the entire system lifecycle—from concept and requirements through design,
verification, operations, and disposal—while being easier to learn and apply than traditional
modeling languages like SysML. It’s intended for Model-Based Systems Engineering (MBSE),
program management, and decision support, with a focus on clarity, usability, and integration.

Key Characteristics
e Core Ontology
* LML defines a small, consistent set of entity types (about a dozen core ones)
such as:
. * Action (tasks, activities, functions)
I.Ife Cyc I e * Asset (hardware, software, facilities)
* Requirement

Modeling : Rk

* Decision

* \Verification
I-q n g U q g e e Concern (issues, opportunities)
* Interface

* This core vocabulary applies across the entire lifecycle.
* Integrated Views

* Functional: what the system does (Actions).

* Physical: what the system is (Assets).

* Parametric: performance, cost, schedule data.

* Traceability: links between requirements, risks, designs, and verifications.
* Consistency

e All diagrams and tables come from the same underlying model—no

duplication.

* Ensures updates in one view are reflected everywhere.
* Ease of Use

* Designed to reduce learning curve.

* Works well with tools like Innoslate (which natively implements LML).

(LML)

SDL
(Specification
anag

Description
Language)

» Specification and Description Language (SDL) is a formal, standardized
modeling language (ITU-T Z.100 standard) used primarily for specifying,
designing, simulating, and validating real-time, event-driven, and
distributed systems—especially in telecommunications, networking, and
embedded control systems. It combines a formal mathematical basis

with a graphical notation so that models can be both precise and human-
readable.

S D I— Basic Conceptsin SDL
(S pecificgﬂon * System: The top-level entity being modeled.

* Block: A subsystem within the system.

. O,nd * Process: A sequential thread of control, modeled as an
Description EFSM.
 Signal: A message sent between processes or from the
LOngUGge) environment.

* Channel: The communication path for signals.
* Procedure: Reusable sequence of actions within a process.
* Timer: Built-in concept for modeling time-based event

SysADL (System
Architecture
Description Language)

SysADL is a Software Architecture
Description Language (ADL) implemented
as a SysML profile. It extends the
modeling capabilities of the Systems
Modeling Language (SysML) to provide
robust, standardized support for
architectural modeling in software-
intensive systems.

	Slide 1: Lesson 3
	Slide 2: Case 3
	Slide 3: What is SysML?
	Slide 4: SYSML Summary
	Slide 5
	Slide 6: SysML Diagram Taxonomy
	Slide 7: Sysml diagrams
	Slide 8: The four pillars of sysml
	Slide 9: Blocks are Basic Structural Elements
	Slide 10: Block Definition Diagram
	Slide 11: Internal Block Diagram
	Slide 12: Internal Block Diagram Example
	Slide 13: Activity Diagram Notation
	Slide 14: Modeling methodology
	Slide 15: Use Case Diagram (Naval based anti aircraft gun)
	Slide 16: Activities
	Slide 17: Activity Diagram
	Slide 18: Analysis Model of Vehicle
	Slide 19: Analysis Model of Vehicle
	Slide 20: Block definition diagram
	Slide 21: Block definition diagram
	Slide 22: Elements
	Slide 23: Elements
	Slide 24: Ports
	Slide 25: Internal Block Diagram for Vehicle
	Slide 26: IBD for Vehicle
	Slide 27: IBD Components
	Slide 28: Sequence diagram
	Slide 29: Sequence diagram
	Slide 30: Sequence diagram
	Slide 31: Sequence diagram
	Slide 32: Modeling Approaches & Methods
	Slide 33: Data Flow Diagrams
	Slide 34: Differences Between DFDs and Flowcharts
	Slide 35: Types of DFDs
	Slide 36: Levels of Detail
	Slide 37: Recommended Progression
	Slide 38: Four Basic Symbols
	Slide 39: DFD Mechanics
	Slide 40: DFD Mechanics
	Slide 41: DFD Mechanics
	Slide 42: DFD Mechanics
	Slide 43: DFD Syntax
	Slide 44: Context Level Diagram
	Slide 45: Decomposition of DFDs
	Slide 46
	Slide 47: Data Flow Diagram
	Slide 48: Data Flow Diagram Semantics
	Slide 49: Context (External Systems) Diagram in DFD
	Slide 50: Data Flow Diagramming Rules
	Slide 51: Data Flow Diagramming Rules
	Slide 52: Data Flow Diagramming Rules
	Slide 53: Microsoft’s Tool
	Slide 54: Function Flow Block Diagrams
	Slide 55: Behavior Diagrams
	Slide 56: Finite State Machines
	Slide 57: State-transition Diagram for ATM
	Slide 58: Other Modeling Languages
	Slide 59: Diagnostic Modeling Language
	Slide 60: Diagnostic Modeling Language
	Slide 61: Architecture Analysis & Design Language (AADL)
	Slide 62: Architecture Analysis & Design Language (AADL)
	Slide 63: MARTE (Modeling and Analysis of Real-Time and Embedded systems
	Slide 64: MARTE (Modeling and Analysis of Real-Time and Embedded systems
	Slide 65: Lifecycle Modeling Language (LML)
	Slide 66: Lifecycle Modeling Language (LML)
	Slide 67: SDL (Specification and Description Language)
	Slide 68: SDL (Specification and Description Language)
	Slide 69: SysADL (System Architecture Description Language)

