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Case 4

• Twice during the cold war nuclear war was 
almost launched due to software glitches. 
The first occurred at 2:25 am on June 3, 
1980, systems at NORAD (United States) 
showed various and changing numbers of 
inbound missiles.   This led to the launch of 
the airborne command post and putting the 
US nuclear systems on high alert.  The cause 
was tracked down to a single faulty chip that 
was failing in a random fashion.  

• The second incident occurred September 
26, 1983. The early warning system for the 
Soviet Union twice reported the launch of 
American ICBMs.  Fortunately an officer with 
the Soviet Air Defense Force realized these 
where false alarms.  The error was caused by 
the systems satellite software not accounting 
for a rare alignment with high altitude clouds 
causing a glare.
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Engineering – Lifecycle

NIST SP 800-60 addresses the role of security systems engineering within the 
lifecycle of U.S. Government owned systems. This same lifecycle should be 
applied to developing security in any environment. Thus, when implementing a 
new intrusion detection system, or in implementing new network policies, one 
should follow the ISO 15288 system development lifecycle (SEBok, 2018). That 
standard includes the following clauses:
Clause 6.4.1 - Stakeholder Requirements Definition Process
Clause 6.4.2 - Requirements Analysis Process

Clause 6.4.3 - Architectural Design Process
Clause 6.4.4 - Implementation Process
Clause 6.4.5 - Integration Process
Clause 6.4.6 - Verification Process
Clause 6.4.7 - Transition Process
Clause 6.4.8 - Validation Process
Clause 6.4.9 - Operation Process
Clause 6.4.10 - Maintenance Process
Clause 6.4.11 - Disposal Process



Design Process

-NASA Systems Engineering Handbook



ARCHITECTURE 
DEFINITION

As stated in ISO/ IEC/ IEEE 15288, 
[6.4.4.1] The purpose of the 
Architecture Definition process is 
to generate system architecture 
alternatives, to select one or 
more alternative( s) that frame 
stakeholder concerns and meet 
system requirements, and to 
express this in a set of consistent 
views.



ARCHITECTURE 
DEFINITION



DESIGN DEFINITION 
PROCESS

• As stated in ISO/ IEC/ IEEE 15288, 
[6.4.5.1] The purpose of the Design 
Definition process is to provide sufficient 
detailed data and information about the 
system and its elements to enable the 
implementation consistent with 
architectural entities as defined in 
models and views of the system 
architecture.



PHYSICAL 
ARCHITECTURE

• A physical architecture model is an arrangement of 
physical elements, (system elements and physical 
interfaces) that provides the solution for a product, 
service, or enterprise. It is intended to satisfy logical 
architecture elements and system requirements 
ISO/IEC/IEEE 26702 (ISO 2007). It is implementable 
through technological system elements. System 
requirements are allocated to both the logical and 
physical architectures. The resulting system 
architecture is assessed with system analysis and 
when completed becomes the basis for system 
realization.

• -https://sebokwiki.org/wiki/Physical_Architecture 



A DESIGN 
PROPERTY

• A design property is a property that is 
obtained during system architecture and 
created through the assignment of non-
functional requirements, estimates, analyses, 
calculations, simulations of a specific aspect, 
or through the definition of an existing 
element associated with a system element, a 
physical interface, and/or a physical 
architecture. If the defined element complies 
with a requirement, the design property will 
relate to (or may equal) the requirement. 
Otherwise, one has to identify any 
discrepancy that could modify the 
requirement or design property and detect 
any deviations.   .-
https://sebokwiki.org/wiki/Physical_Architect
ure 



ACTIVITIES IN THE ARCHITECTURE 
PROCESS

Partition and allocate 
functional elements 
to system elements

1

Constitute candidate 
physical architecture 
models. 

2

Assess physical 
architecture model 
candidates and 
select the most 
suitable one

3

Synthesize the 
selected physical 
architecture model

4



ARTIFACTS OF 
THE 
ARCHITECTURE 
PROCESS

Physical block diagrams (PBD)

SysML block definition diagrams (BDD)

Internal block diagrams (IBD) (OMG 2010)

Executable architecture prototyping



DESIGN DEFINITION 
PROCESS



CRITICAL DESIGN 
REVIEW

A multi-disciplined technical review, conducted at both system-level and component-
level, ensures that the initial product baseline is established. The component-level 
CDRs should be successfully completed for each major component before conducting 
the system-level CDR. It completes the process of defining the technical requirements 
for each component, which are documented in the item performance specification of 
each component. A successful completion of CDR provides a sound technical basis for 
proceeding into fabrication, integration, and developmental test and evaluation. At 
completion of the CDR, the initial product baseline is normally taken under contractor 
configuration control at least until the physical configuration audit (PCA).



ANALYSIS OF 
ALTERNATIVES (AOA)

The AoA assesses potential materiel solutions to mitigate the capability gaps documented in the 
validated Initial Capabilities Document (ICD). The AoA focuses on identification and analysis of 
alternatives, measures of effectiveness (MOE), cost, schedule, concepts of operation, and overall 
risk. This includes the sensitivity of each alternative to possible changes in key assumptions or 
variables. The AoA addresses trade space to minimize risk and also assesses critical technology 
elements associated with each proposed materiel solution. This includes technology maturity, 
integration risk, manufacturing feasibility, and, where necessary, technology maturation and 
demonstration needs. The AoA normally occurs during the Materiel Solution Analysis (MSA) phase 
of the Acquisition process, is a key input to the Capability Development Document (CDD), and 
supports the materiel solution decision at Milestone A. (Sources: DoDI 5000.02 and JCIDS Manual)



ANALYSIS OF 
ALTERNATIVES (AOA)

AoA Study Guidance - For potential and designated ACAT I programs, the Director for Cost 
Assessment and Program Evaluation (DCAPE) prepares study guidance for the DoD Component 
Head 40 business days prior to the Materiel Development Decision (MDD). The Milestone Decision 
Authority (MDA) will include the study guidance with the MDD acquisition decision 
memorandum.  For ACAT II and III programs, Component AoA procedures apply. 
AoA Study Plan - For ACAT I programs, the AoA Study Plan is developed by the component or 
agency from the AoA Study Guidance issued by DCAPE and submitted 20 days prior to the 
MDD.  For ACAT I programs, the AoA study plan must be approved by DCAPE.  The AoA Plan details 
the approach the sponsor will follow when conducting the AoA during the Mission Solutions 
Analysis (MSA) phase.  In addition to building the plan and submitting it for approval, the 
component or agency must submit a memorandum to the MDA for ACAT I programs that ensure 
the completion of the AoA within nine months.  Only the Secretary of Defense or his/her delegate 
can waive this nine-month window.



ANALYSIS OF 
ALTERNATIVES (AOA)

AoA Final Report – The final Study Advisory Group (SAG) will meet either 55 business days before 
the next milestone’s request for proposal (RFP) or no later than nine months after the start of the 
AoA.  The AoA Sponsor provides the final AoA to DCAPE no later than 40 business days after 
briefing the final SAG. DCAPE evaluates the AoA and provides a memorandum to the MDA no later 
than 40 business days after receiving the AoA Final Report from the component (this 
memorandum may be received after the Developmental Request for Proposal Release Decision 
(DRFPRD) or Milestone A.  The sponsor also sends copies to the DoD Component head or other 
organization or principal staff assistant assessing whether the analysis was completed consistent 
with DCAPE Study Guidance and the DCAPE-approved Study Plan)



ALTERNATIVE SYSTEM 
REVIEW (ASR)

The Alternative Systems Review (ASR) should be conducted typically after the completion of the 
analysis of alternatives (AoA).  The system parameters should be defined based on the trade off 
among cost, schedule, and risks.

The inputs of an ASR include:
•The AoA results.
•The preferred materiel solution.
•The draft concept of operations (CONOPS).

The outputs of an ASR include:
•Refined description of the preferred materiel solution to support further development.
•Informed advice to the user-developed draft Capability Development Document (CDD) required 
at Milestone A.



CAPABILITIES BASED 
ASSESSMENT (CBA)

A Joint Capabilities Integration and Development System (JCIDS) analytic process. The CBA 
identifies capability requirements and associated capability gaps. Results of a CBA or other 
study provide the source material for one or more Initial Capabilities Documents (ICDs), or 
other JCIDS documents in certain cases when an ICD is not required

A number of DoDAF views are to be used to capture results of a CBA, facilitating reuse in 
JCIDS documents, acquisition activities, and capability portfolio management.  When one 
or more studies or analyses are used in place of a CBA, the Sponsor may need to 
consolidate the data from those studies into a single set of DoDAF products appropriate for 
the scope of the ICD.



Design for 
Diagnosability

• Design for Diagnosability is a 
systems engineering and reliability 
principle that focuses on making a 
system easy to detect, isolate, and 
identify faults during operation and 
maintenance. It’s a proactive design 
approach—integrated from the 
early stages—to ensure that when 
something goes wrong, you can 
quickly and accurately figure out 
what and where the problem is.



Design for 
Diagnosability

Design Techniques
• Built-In Test Equipment (BITE)
Integrated electronics or software that perform self-tests 
and report failures.
• Modularization
Design the system so faulty modules can be quickly 
replaced (Line Replaceable Units, LRUs).
• Clear Feedback & Alerts
Use standardized fault codes, graphical interfaces, or verbal 
alerts to convey what failed and why.
• Redundancy with Isolation
Not just having backups, but also the ability to tell which 
path/component failed.
• Accessible Test Points
Place connectors, pads, or software hooks to measure 
critical signals without dismantling the system.



Design for 
Diagnosability

• Consider a UAV system as an example. A UAV 
propulsion system is designed for diagnosability 
by:

• Embedding ESC telemetry (RPM, current, 
temperature) into the flight controller logs.

• Using vibration sensors near motors to detect 
early bearing wear.

• Assigning unique error codes for motor 
overheat vs. ESC overcurrent.

• Designing the wiring harness with color-coded 
quick-disconnects for fast replacement



PART II 
VERIFICATION AND 
VALIDATION



Verification vs validation
• Verification: 

 "Are we building the product right”.

• The software should conform to its specification.

• Validation:
  "Are we building the right product”.

• The software should do what the user really requires.



Definitions

V&V – a system engineering discipline employing 
a rigorous methodology for evaluating and 
assessing the correctness and quality of software 
throughout the software life cycle.

Verify a developers process is technically sound.



V&V and QA

V&V and QA are not the same, but compliment each other.

V&V usually focuses on ensuring the requirements are being 
met, the overall project is focused on the correct objectives, 
and risk is being managed.

QA is focused on the day to day aspects of a project and is 
used to determine if procedures are followed 



V&V Concepts
• Benefits of V&V

• Early detection leads to a better solution rather than 
quick fixes

• Validating the solution is solving the “right problem” 
against software requirements

• Objective evidence of software and system compliance to 
quality standards

• Support process improvements with an objective 
feedback on the quality of development process and 
products



V & V goals

• Verification and validation should 
establish confidence that the software 
is fit for purpose

• This does NOT mean completely free 
of defects

• Rather, it must be good enough for its 
intended use and the type of use will 
determine the degree of confidence 
that is needed



V & V 
planning

Careful planning is required to get the 
most out of testing and inspection 
processes

Planning should start early in the 
development process

The plan should identify the balance 
between static verification and testing

Test planning is about defining standards 
for the testing process rather than 
describing product tests



Planning 
for V&V

Scope of work

Software Integrity Levels

Development of the Software V&V Plan 
(SVVP)

Cost of V&V



Planning 
for V&V 
(cont)

V&V is more effective when initiated 
during the acquisition process and 
throughout the life cycle of the software.

V&V has importance levels or called 
“Integrity Levels”

Example 

• Medical device – high level

• Personnel record-keeping system – low level



Integrity 
Levels

The level is a range of values that represent 
software complexity, criticality, risk, safety level, 
security level, desired performance, reliability, or 
other project-unique characteristics.

Each level defines the minimum required V&V 
tasks.

ANSI/IEEE Std 1012 defines four levels. Level 4 is 
assigned to high-assurance or critical systems



Life Cycle 
V&V Tasks

Acquisition V&V

Supply V&V

Development V&V (Concept, Requirements, Design, 
Implementation)

Development V&V (Test)

Development V&V (Installation and Checkout)

Operation V&V

Maintenance V&V



V&V 
Techniques 
and 
Methods

Audits, Reviews, and 
Inspection

Analytic Techniques

Dynamic Techniques



Audits, Reviews, and 
Inspection

• V&V use these techniques to verify the 
software during its development 
process

• Peer Reviews
• Documentation inspections
• Requirements/design/code reading
• Test witnessing 
• Installation audits



Analytic Techniques

Static analysis of the software (i.e, 
requirements, design, or code) using graphical, 
mathematical formulas or diagrams.

Effective in error detection at the software 
unit level



Analytic 
Techniques

Control (data) flow diagramming

Interface input/output/process 
diagramming

Algorithm and equation analysis

Database analysis

Sizing and timing analysis

Proof of correctness



What to look for

• The number of iterations the algorithm requires. 
In any algorithm, the process will need to be 
repeated (at least for sorting or searching 
algorithms). The number of iterations required, 
both on average, and worst case, is one way to 
measure the efficiency of the algorithm. 

• The amount of resources required. Any 
algorithm will require a certain amount of 
resources, usually RAM (Random Access 
Memory). The resources required, is yet another 
way to evaluate the efficiency of an algorithm. 



Big O 
Analysis

• Perhaps the most common way to formally evaluate 
the efficacy of a given algorithm is Big O notation 
(Mathworld 2005). This method is measure of the 
execution of an algorithm, usually the number of 
iterations required, given the problem size n. In sorting 
algorithms n is the number of items to be sorted. . 
Stating some algorithm f(n) = O(g(n)) means it is less 
than some constant multiple of g(n). The notation is 
read, "f of n is big oh of g of n". This means that saying 
an algorithm is 2N, means it will have to execute 2 
times the number of items on the list. Big O notation 
essentially measures the asymptotic upper bound of a 
function. Big O is also the most often used analysis.

• Big O Notation was first introduced by the 
mathematician Paul Bachmann in his 1892 book 
Analytische Zahlentheorie. The notation was 
popularized in the work of another mathematician 
named Edmund Landau. Because Landaue was 
responsible for popularizing this notation. it is 
sometimes referred to as a Landau symbol.



Big O Analysis

• Omega notation is the opposite of Big O notation. It is the asymptotic 
lower bound of an algorithm and gives the best-case scenario for that 
algorithm. It gives you the minimum running time for an algorithm 
(Cormen 2001).

• Theta notation combines Big O and Omega to give the average case 
(average being arithmetic mean in this situation) for the algorithm. In 
our analysis we will focus heavily on the Theta, also often referred to 
as the Big O running time. This average time gives a more realistic 
picture of how an algorithm executes (Cormen 2001).

• Note: It can be confusing when a source refers to a Big O running time 
other than a theta. In writing this paper I found several online sources 
that used O notation, when clearly what they where providing was 
actually .



Space 
Complexity

This topic is defined in different ways in different 
sources. One common definition is the amount of 
memory space required to solve an instance of the 
problem, as a function of the input.  Time complexity 
is simply the amount of time it takes to execute an 
algorithm.  Obviously, these both relate to what is 
often called time-space complexity.

Space complexity is normally considered to have two 
different spaces: Input space and Auxiliary space. As 
the name suggests, auxiliary space is that space 
needed, other than what is needed for input.

FYI, my recommendation for a basic algorithm book 
has always been Cormen, Thomas H.; Leiserson, 
Charles E.; Rivest, Ronald L.; Stein, Clifford. 
Introduction to Algorithms, third edition. MIT Press.

For something more advanced: Peter Bürgisser. 
Completeness and Reduction in Algebraic Complexity 
Theory (Algorithms and Computation in Mathematics)



Cyclomatic 
Complexity

In 1976 Thomas McCabe developed cyclomatic complexity (McCabe, 1976). Cyclomatic complexity is 
defined as the number of linearly independent paths in a given body of code (Pawade, Dave,  & Kamath, 
2016). Thus, if there are no code branches such as in if statements, switch statements, or other decision 
points, then there is a cyclomatic complexity of 1. There exists only one linearly independent path 
through the code (Ukić,  Maras, & Šerić, 2018). Put more formally, the cyclomatic complexity of source 
code is defined using a control flow graph of the program or function (Ebert & Cain, 2016). This is a 
directed graph wherein the nodes are the basic blocks of the program or function and the edges connect 
those nodes. The cyclomatic complexity is defined as:

    C = E − N + 2P, where

    E = the number of edges of the graph.

    N = the number of nodes of the graph.

    P = the number of connected components

     This is a useful approach for measuring complexity because it integrates graph theory.  McCabe only 
integrated the most basic elements of graph theory (McCabe, 1976), however, once one has expressed a 
problem as a graph, the full power of graph theory could be applied. Put another way, it would not be an 
overly arduous task to expand this definition to incorporate a range of graph theory elements such as 
weighted nodes and edges, incidence functions relating the nodes,  or even more sophisticated aspects of 
graph theory such as spectral graph theory (Easttom, 2020b). 



Halstead Metrics

The field of computational complexity is 
rather robust and well developed. This is 
evident from the multiple modalities of 
studying computational complexity. Within 
that context there are several methods for 
calculating complexity. In 1977 Maurice 
Halstead put forth what are now known as 
Halstead complexity measures or metrics 
.These are metrics for measuring software 
complexity. Halstead posited several metrics 
for software complexity (shown in table 3.



Halstead Metrics

Metric Value

n1 Number of distinct operators.

n2 Number of distinct operands.

N1 Total number of occurrences of operators.

N2 Total number of occurrences of operands.

n1* Number of potential operators.

n2* Number of potential operands.



Dynamic 
Techniques

Involve the 
execution of the 

software.

Effective at error 
detection when 
software units 

are combined at 
the integrated 
subsystem and 
system levels



Dynamic 
Techniques

• Simulation and modeling

• Hardware/software benchmark testing

• Hardware-in-the loop testing – the 
system config. is heavily instrumented 
to simulate different test scenarios to 
be created.

• Scientific testing – coding of the target 
requirements/design using a general-
purpose computer and higher order 
language. 



Measurement 
Applied to 

V&V

• Uses various calculated 
measurements to determine when 
the analysis or testing is completed, 
where errors are mostly likely to 
occur in the software, and what 
development process or function is 
causing the largest number of 
errors.

• Based on these measurements, the 
software engineer can determine 
where to concentrate their efforts.



Measurement 
Methods

Software Structural Metrics – measures 
pinpoint program logic having greater logical 
or data complexity

Statistics-Based Measurements – examines 
program error rates, categorization of errors, 
and error discovery time periods

Trend Analysis – analyzing percent of errors 
with historical data

Prediction-Based Measurement – using 
reliability models to determine how much 
analysis and test effort to be done.



Acronyms

Engel, Avner. Verification, Validation, and Testing of Engineered Systems (Wiley Series in Systems Engineering 
and Management Book 73)



Availability

Inherent Availability: System availability assuming corrective 
maintenance is only undertaken when the system fails

IA = MTBF/ (MTBF+MTTR)

Achieved Availability: System availability assuming maintenance 
is undertaken for both corrective and preventive actions and all 
logistics

AA = MTBMA/(MTBMA +MNT)

Operational Availability: System availability assuming 
maintenance is undertaken for both corrective and preventive 
actions and average logistic delays are encountered:

OA = MTBMA/(MTBMA + MDT)

Engel, Avner. Verification, Validation, and Testing of Engineered 
Systems (Wiley Series in Systems Engineering and Management Book 
73)



PART III More Modeling



Views and Viewpoints

• Consistent with IEEE 1471

• Viewpoint represents stakeholders, their concerns/purpose/intent, and 
construction rules for specifying a view

• View is a read only mechanism that captures the model subset that 
addresses the stakeholder concerns

• Realizes the viewpoint

• Relationships between model elements established in model and not between 
views



IEEE 1471

• IEEE 1471 (section 5.3) prescribes that a viewpoint contains:
• a) A viewpoint name

• b) The stakeholders to be addressed by the viewpoint

• c) The concerns to be addressed by the viewpoint

• d) The language, modeling techniques, or analytical methods to be used in 
constructing a view based upon the viewpoint

• e) The source, for a library viewpoint (the source could include author, date, or
reference to other documents, as determined by the using organization)



Power Subsystem 
Breakdown

• Block Definition 
Diagram Used to Specify 
System Hierarchy and 
Classification

bdd [block] HSUV [PowerSubsystem Breakdown]
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Power Subsystem IBD

55

ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator]
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UML  
CLASS 

DIAGRAM
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type 
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enable() 

disable() 

reconf igure ()



UML STATE 
DIAGRAM

Figure 7.6  Preliminary  UML  st at e diagram for a phot ocopier
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Ports Approach

• Ports represent block interaction points via which Blocks provide 
or consume data/material/energy or services 

• Support specification of interfaces on a block independent of a 
specific usage (e.g. this component requires 110 volts of power 
input)

• Approach is to specialize two port types 
• Flow ports 

• Port type specifies what can flow in our out of 
block/part

• A connection point through which there is a flow of 
information, material, or energy (I/O)

• Typically asynchronous flow where producer is not 
aware when/who consumes the flow

• Client server ports 
• Service oriented (request-reply) peer2peer interaction 
• Typically synchronous communication
• Specified similar to UML2.0 ports using 

required/provided interfaces detailing the set of 
provided/required services  

• Allow signal exchanges for compatibility 



FlowPorts
• Additional considerations

• Simple (natural) way for SEs to specify I/O via the port 

• Address the common case of atomic FlowPorts

• Allow both signal flow and data/block instance flow

• FlowPorts Specification
• I/O is specified using an interface stereotyped FlowSpecification

• FlowSpecification consists of properties stereotyped FlowProperties

• FlowProperty has a direction attribute: in, out, inOut

• FlowProperties can be typed by ValueTypes, Block, and Signals

• isConjugate promotes reuse of flowSpecifications  

•  Atomic FlowPorts
• It is common that a FlowPort flows a single item type

• In this case the port is directly typed by the item type (Block or Value)

• Direction property specify the direction 

• Compatibility rules on ports facilitate interface compatibility



Item Flows Approach

• Distinct from what can flow via the port 
specification

• Supports compact and intuitive modeling of 
physical flows

• Supports top down description of flows without 
imposing behavioral method (e.g. activities, 
state, interactions)

• Is aligned with behavior thru refinement and 
allocation

• Facilitates flow allocations from an object node, 
message, or signal from a behavioral diagram

• Properties of item flow can be specified and 
constrained in parametric diagram



Power Subsystem IBD
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Controller
bp:BatteryPack

i1:Electric
Current

i2:Electric
Current

fp:FuelPump

fi:FuelInjector

fdist
bp:BrakeSubsystem
.BrakePedal

<>

<
>

<><>

4

fuelReturn:Fuel

<>

<>

<
>

<
>

g1:Torque

t2
:T

o
rq
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e

t1
:T

o
rq
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e

ice

ctrl

I_ICECmds

I_ICECmds

ctrl

ctrl

I_ICEData I_ICEData

trsmepc

c3

c2

c1

I_IEPCCmdI_IEPCData

I_IEPCDataI_EPCCmd

I_TRSMData

I_TRSMCmd

I_TRSMCmd

I_TRSMData

<
>

<
>

<
>

rightHalfShaft

<
>

<
>

<
>

leftHalfShaft

Client server port

Flow port

Item flow

Connector



Parametrics
• Used to express constraints (equations) between value properties 

• Provides support to engineering analysis (e.g. performance, reliability, etc)
• Reusable (e.g. F=m*a is reused in many contexts)
• Non-causal (i.e. declarative statement of the invariant without specifying 

dependent/independent variables)

• Constraint block defined as a simple extension of block
• Packages UML constraint so they are reusable and parameterized
• Constraint and constraint parameters are specified
• Expression language can be formal (e.g. MathML, OCL …) or informal
• Computational engine is defined by applicable analysis tool and not by SysML

• Parametric diagram represents the usage of the constraints in an analysis 
context

• Binding of constraint usage to value properties of blocks (e.g. vehicle mass bound 
to F= m * a)

• Can use nested notation or dot notation

• MOE’s and objective functions integrated with Parametrics to support trade 
studies and engineering analysis



Defining 
Vehicle 

Dynamics

bdd [package] HSUVAnalysis [Definition of Dynamics]

parameters

whlpowr:Real

Cd:Real

Cf:Real

tw:Real

tp:Real

v:Real

i:Real

Constraints

{tp(hp) = whlpowr - (Cd*v)

- (Cf*tw*v)}}

«constraint»
PowerEquation

parameters

tw:Real

dt:Real

tp:Real

a:Real

Constraints

{a(g) = F/m = P*t/m = (550/

32)*tp(hp)*delta-t*twi}

«constraint»
AccelerationEquation

parameters

dt:Real

v:Real

a:Real

Constraints

{v(n+1)=v(n)+dv = v(n) + a*dt}

{v(n+1 =v(n)+a*32*3600/5280*dt}

«constraint»
VelocityEquation

parameters

dt:Real

v:Real

x:Real

Constraints

{x(n+1)=x(n)+dx(dt)=x(n)+v*dt}

{x(n+1)=x(n)+v*5280/3600*dt}

«constraint»
PositionEquation

parameters

whlpowr:Real

Cd:Real

Cf:Real

tw:Real

acc:Real

vel:Real

incline:Real

«constraint»
StraightLine

VehicleDynamics



Evaluating Vehicle Dynamics
par [constraintBlock] StraightLineVehicleDynamics

Accelleration

Equation

VelocityEquation

PostionEquation

PowerEquation

«value»
globalTime.delta-t

whlpwr twCd Cf

tp

tp

dt

dt

dt

tw

tw

a

a

v

v

acc

vel

Cf

Cd

whlpwr

v

x

«value»
HSUV.position

incline

i



Evaluating 
Measures of 
Effectiveness

par [constraintBlock] MeasuresOfEffectiveness [HSUV MOEs]

«objectiveFunction»

:MyObjectiveFunction

{CE = ∑ Wi*Pi}

«moe»

HSUValt1.CostEffectiveness

«moe»

HSUValt1.FuelEconomy

«moe»

HSUValt1.Zero60Time

«moe»

HSUValt1.CargoCapacity

«moe»

HSUValt1.QuarterMileTime

Instance of

constraint block is

identical for each

alternative

«moe»

HSUValt1.UnitCost

:EconomyEquation
f:

:MaxAcceleration

Analysis

q:

z:

:CapacityEquation
vc:

:UnitCostEquation
uc:

p
4
:

p
1
:

p
2
:

p
3
:

p
5
:

CE:
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Distiller Example

Dirty water

@ 20 deg C

Heat  Dirty water

To 100 deg C

Heat to Dirty

water

Boil Dirty water

Dirty water

@ 100 deg C
Steam

Residue

and

Condense

steam

Drain

Residue

Pure

water

Disposed

residue

and

Heat to Boil

water

Energy to

condense



Distill 
Water 

Activity 
Diagram 
(Initial)

«effbd»
act [activity] DistillWater [Simple Starting Point)

a1:HeatWater a2:BoilWater

a3:CondenseSteam

a4:DrainResidue

coldDirty:H2O

[liquid]

hotDirty:H2O

[liquid]

steam:H2O

[gas]

pure:H2O

[liquid]

hiPress:Residue loPress:Residueexternal:Heatrecovered:Heat

recovered:Heat

Note: these are

the same thing!



Distill Water 
Activity 

Diagram 
(Continuous 

Flow 
Modeling)

act [activity] DistillWater [Parallell Continuous Activities)

a1:HeatWater

a2:BoilWater

a3:CondenseSteam

a4:DrainResidue

«continuous»
coldDirty:H2O

[liquid]

«continuous»
hotDirty:H2O

[liquid]

«continuous»
steam:H2O

[gas]

«continuous»
pure:H2O

[liquid]

hiPress:Residue

loPress:Residue

«continuous»
external:Heat

«continuous»
recovered:Heat



Interactions
• Sequence diagrams provide representations for 

message based behavior 
• Represents flow of control

• Less effective than activities for representing inputs from multiple 
sources

• UML 2 sequence diagrams significantly more scalable by 
providing reference sequences, control logic, and lifeline 
decomposition

• Timing diagrams provide representations for typical 
system timelines and value properties vs time

• No change to UML
• Minor clarification on continuous time representations



Black Box Sequence 
(StartVehicle)

sd StartVehicleBlackBox

driver:Driver
hybridSUV:HybridSUV

ref StartVehicleWhiteBox

1: StartVehicle()

turnIgnitionToStart

References Lifeline Decomp
For White Box Interaction



White Box Sequence 
(StartVehicle)

sd StartVehicleWhiteBox

ecu:PowerControlUnit epc:ElectricalPowerController

1.1: Enable

1: StartVehicle

1.2:ready



Requirements

• Requirements represents a text based requirement
• Minimal properties specified for id and text 

based on user feedback
• Stereotype mechanism used to categorize 

requirements (e.g. functional, physical)
• Able to specify constraints on what design 

elements can satisfy the requirement (refer 
to Appendix C.2)

• Stereotype of class (abstract) without instances
• Requirements containment used to specify 

requirements hierarchy as a collection of 
requirements (e.g., a specification)

• SST uses cross hairs notation vs black 
diamond composition to be consistent with 
containment semantics 

• Requirements relationships based on subclasses of 
dependency

• Derive, Satisfy, Verify, Refine, ..

72



Dependencies
• Used to specify relationships among 

requirements (other uses as well)
• Different concept for SE’s with arrow 

direction reversed from typical 
requirements flow-down

• Refer to next slide
• Represents a relationship between client and 

supplier elements
• Client depends on supplier

• A change in supplier results in a change 
in client

• Application to requirements:  A change 
in requirement (supplier) results in a 
change in design element that satisfies 
it (client) or requirement derived from 
it (client)



Example of 
Derive/Satisfy 
Requirement 
Dependencies

Client

Supplier

«requirement»
Power

«requirement»
Accelleration

«requirement»
CargoCapacity

«requirement»
OffRoadCapability

«deriveReqt» «deriveReqt» «deriveReqt»

«block»
PowerSubsystem

«satisfy»

Client

Supplier



Requirements Breakdown

req [package] HSUVRequirements [HSUV Specification]

«requirement»
Eco-Friendliness

«requirement»
Performance

«requirement»
Capacity«requirement»

Ergonomics

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
OffRoadCapability

«requirement»
Accelleration

Id = R1.2.1

text = The vehicle shall meet Ultra-Low

Emissions Vehicle standards.

«requirement»
Emissions

«requirement»
PassengerCapacity

«requirement»
FuelCapacity

«requirement»
CargoCapacity

HSUVSpecification

«requirement»
Qualification

«requirement»
SafetyTest



Requirements Derivation

req [package] HSUVRequirements [Requirement Derivation]

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
RegenerativeBraking

«requirement»
PowerSourceManagement

«requirement»
Power

«deriveReqt»«deriveReqt»

«deriveReqt»

«deriveReqt»

«requirement»
Accelleration

«requirement»
CargoCapacity

«requirement»
FuelCapacity

«requirement»
OffRoadCapability

«requirement»
Range

«deriveReqt»«deriveReqt»

«deriveReqt» «deriveReqt» «deriveReqt»

RefinedBy

HSUVStructure::HSUV.

HSUVOperationalStates
«rationale»
Power delivery must happen by coordinated

control of gas and electric motors.

reference= “Hybrid Design Guidance”



Reqts Refinement/Verification

req [package] HSUVRequirements [Acceleration Requirement Refinement and Verification]

«requirement»
Acceleration

HSUVUseCases:

:Accelerate

«block»
PowerSubsystem

«refineReqt»

«satisfy»

«requirement»
Power

«deriveReqt»

«testCase»
Max Acceleration

«verify»



Requirements Tables & Trees

table [requirement] Performance [Tree of Performance Requirements]

table [requirement] Performance [Decomposition of Performance Requirement]

table [requirement] Capacity [Decomposition of Capacity Requirement]

id name text

4 Capacity

The Hybrid SUV shall carry 5 adult passengers, along with 

sufficient luggage and fuel for a typical weekend campout.

4.1 CargoCapacity

The Hybrid SUV shall carry sufficient luggage for 5 people 

for a typical weekend campout.

4.2 FuelCapacity

The Hybrid SUV shall carry sufficient fuel for a typical 

weekend campout.

4.3 PassengerCapacity The Hybrid SUV shall carry 5 adult passengers.

id name text

2 Performance

The Hybrid SUV shall have the braking, acceleration, and off-

road capability of a typical SUV, but have dramatically better 

fuel economy.

2.1 Braking

The Hybrid SUV shall have the braking capability of a typical 

SUV.

2.2 FuelEconomy

The Hybrid SUV shall have dramatically better fuel economy 

than a typical SUV.

2.3 OffRoadCapability

The Hybrid SUV shall have the off-road capability of a 

typical SUV.

2.4 Acceleration

The Hybrid SUV shall have the acceleration of a typical 

SUV.

id name relation id name relation id name

2.1 Braking deriveReqt d.1 RegenerativeBraking

2.2 FuelEconomy deriveReqt d.1 RegenerativeBraking

2.2 FuelEconomy deriveReqt d.2 Range

4.2 FuelCapacity deriveReqt d.2 Range

2.3 OffRoadCapability deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement

2.4 Acceleration deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement

4.1 CargoCapacity deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement



Power Subsystem Breakdown

bdd [block] HSUV [PowerSubsystem Breakdown]

«block»
PowerSubsystem

«block»
ElectricMotor

Generator

«block»
FrontWheel

«block»
accelerator

«block»
FuelTankAssembly

«block»
Differential

«block»
Transmission

«block»
InternalCombustionEngine

«block»
FuelInjector

lfw

4

«block»
BatteryPack

«block»
ElectricalPowerController

«block»
PowerControlUnit

«block»
FuelPump

«block»
BrakePedal

«block»
WheelHubAssembly

rfw



Power 
Subsystem IBD

ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator]

emg:ElectricMotor

Generator

trsm:Transmission

ice:InternalCombustionEngine

acl:accelerator

ecu:PowerControlUnit

ft:FuelTankAssy

dif:Differential

rfw:ChassisSubsytem
.FrontWheel

lfw:ChassisSubsytem
.FrontWheel

Port:FuelTankFitting

Port:ICEFuelFitting

fuelDelivery

torqueOut:Torque

torquein:Torque

spline

fuelSupply:Fuel

epc:ElectricalPower

Controller
bp:BatteryPack

i1:Electric
Current

i2:Electric
Current

fp:FuelPump

fi:FuelInjector

fdist
bp:BrakeSubsystem
.BrakePedal

<>

<
>

<><>

4

fuelReturn:Fuel

<>

<>

<
>

<
>

g1:Torque

t2
:T

o
rq

u
e

t1
:T

o
rq

u
e

ice

ctrl

I_ICECmds

I_ICECmds

ctrl

ctrl

I_ICEData I_ICEData

trsmepc

c3

c2

c1

I_IEPCCmdI_IEPCData

I_IEPCDataI_EPCCmd

I_TRSMData

I_TRSMCmd

I_TRSMCmd

I_TRSMData

<
>

<
>

<
>

rightHalfShaft

<
>

<
>

<
>

leftHalfShaft
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