
Lesson 5
Architecture & Design

Systems Engineering for DoD

Case 4

• Twice during the cold war nuclear war was
almost launched due to software glitches.
The first occurred at 2:25 am on June 3,
1980, systems at NORAD (United States)
showed various and changing numbers of
inbound missiles. This led to the launch of
the airborne command post and putting the
US nuclear systems on high alert. The cause
was tracked down to a single faulty chip that
was failing in a random fashion.

• The second incident occurred September
26, 1983. The early warning system for the
Soviet Union twice reported the launch of
American ICBMs. Fortunately an officer with
the Soviet Air Defense Force realized these
where false alarms. The error was caused by
the systems satellite software not accounting
for a rare alignment with high altitude clouds
causing a glare.

Concept

Requirements

Implementation

Design

Operation &
Maintenance

• Initial concept

• Concept
Documentation

• Concept Documentation

• Requirements gathering
& Analysis

• V&V of Requirements

• Requirements
Documents

• Requirements Bi-
Directional
Traceability Matrix

• Requirements Risk
Analysis.

• Test plan
generation

• Requirements
Documents

• Interface Design

• User Documents

• V&V of Design

• Design Documents

• Design Analysis &
Evaluation

• Test Plan Revising

• Design Documents

• Coding

• V&V of Code

• Product

• Code Analysis

• Code Tester

• User
Documentation

• Support Procedures

Engineering – Lifecycle

NIST SP 800-60 addresses the role of security systems engineering within the
lifecycle of U.S. Government owned systems. This same lifecycle should be
applied to developing security in any environment. Thus, when implementing a
new intrusion detection system, or in implementing new network policies, one
should follow the ISO 15288 system development lifecycle (SEBok, 2018). That
standard includes the following clauses:
Clause 6.4.1 - Stakeholder Requirements Definition Process
Clause 6.4.2 - Requirements Analysis Process

Clause 6.4.3 - Architectural Design Process
Clause 6.4.4 - Implementation Process
Clause 6.4.5 - Integration Process
Clause 6.4.6 - Verification Process
Clause 6.4.7 - Transition Process
Clause 6.4.8 - Validation Process
Clause 6.4.9 - Operation Process
Clause 6.4.10 - Maintenance Process
Clause 6.4.11 - Disposal Process

Design Process

-NASA Systems Engineering Handbook

ARCHITECTURE
DEFINITION

As stated in ISO/ IEC/ IEEE 15288,
[6.4.4.1] The purpose of the
Architecture Definition process is
to generate system architecture
alternatives, to select one or
more alternative(s) that frame
stakeholder concerns and meet
system requirements, and to
express this in a set of consistent
views.

ARCHITECTURE
DEFINITION

DESIGN DEFINITION
PROCESS

• As stated in ISO/ IEC/ IEEE 15288,
[6.4.5.1] The purpose of the Design
Definition process is to provide sufficient
detailed data and information about the
system and its elements to enable the
implementation consistent with
architectural entities as defined in
models and views of the system
architecture.

PHYSICAL
ARCHITECTURE

• A physical architecture model is an arrangement of
physical elements, (system elements and physical
interfaces) that provides the solution for a product,
service, or enterprise. It is intended to satisfy logical
architecture elements and system requirements
ISO/IEC/IEEE 26702 (ISO 2007). It is implementable
through technological system elements. System
requirements are allocated to both the logical and
physical architectures. The resulting system
architecture is assessed with system analysis and
when completed becomes the basis for system
realization.

• -https://sebokwiki.org/wiki/Physical_Architecture

A DESIGN
PROPERTY

• A design property is a property that is
obtained during system architecture and
created through the assignment of non-
functional requirements, estimates, analyses,
calculations, simulations of a specific aspect,
or through the definition of an existing
element associated with a system element, a
physical interface, and/or a physical
architecture. If the defined element complies
with a requirement, the design property will
relate to (or may equal) the requirement.
Otherwise, one has to identify any
discrepancy that could modify the
requirement or design property and detect
any deviations. .-
https://sebokwiki.org/wiki/Physical_Architect
ure

ACTIVITIES IN THE ARCHITECTURE
PROCESS

Partition and allocate
functional elements
to system elements

1

Constitute candidate
physical architecture
models.

2

Assess physical
architecture model
candidates and
select the most
suitable one

3

Synthesize the
selected physical
architecture model

4

ARTIFACTS OF
THE
ARCHITECTURE
PROCESS

Physical block diagrams (PBD)

SysML block definition diagrams (BDD)

Internal block diagrams (IBD) (OMG 2010)

Executable architecture prototyping

DESIGN DEFINITION
PROCESS

CRITICAL DESIGN
REVIEW

A multi-disciplined technical review, conducted at both system-level and component-
level, ensures that the initial product baseline is established. The component-level
CDRs should be successfully completed for each major component before conducting
the system-level CDR. It completes the process of defining the technical requirements
for each component, which are documented in the item performance specification of
each component. A successful completion of CDR provides a sound technical basis for
proceeding into fabrication, integration, and developmental test and evaluation. At
completion of the CDR, the initial product baseline is normally taken under contractor
configuration control at least until the physical configuration audit (PCA).

ANALYSIS OF
ALTERNATIVES (AOA)

The AoA assesses potential materiel solutions to mitigate the capability gaps documented in the
validated Initial Capabilities Document (ICD). The AoA focuses on identification and analysis of
alternatives, measures of effectiveness (MOE), cost, schedule, concepts of operation, and overall
risk. This includes the sensitivity of each alternative to possible changes in key assumptions or
variables. The AoA addresses trade space to minimize risk and also assesses critical technology
elements associated with each proposed materiel solution. This includes technology maturity,
integration risk, manufacturing feasibility, and, where necessary, technology maturation and
demonstration needs. The AoA normally occurs during the Materiel Solution Analysis (MSA) phase
of the Acquisition process, is a key input to the Capability Development Document (CDD), and
supports the materiel solution decision at Milestone A. (Sources: DoDI 5000.02 and JCIDS Manual)

ANALYSIS OF
ALTERNATIVES (AOA)

AoA Study Guidance - For potential and designated ACAT I programs, the Director for Cost
Assessment and Program Evaluation (DCAPE) prepares study guidance for the DoD Component
Head 40 business days prior to the Materiel Development Decision (MDD). The Milestone Decision
Authority (MDA) will include the study guidance with the MDD acquisition decision
memorandum. For ACAT II and III programs, Component AoA procedures apply.
AoA Study Plan - For ACAT I programs, the AoA Study Plan is developed by the component or
agency from the AoA Study Guidance issued by DCAPE and submitted 20 days prior to the
MDD. For ACAT I programs, the AoA study plan must be approved by DCAPE. The AoA Plan details
the approach the sponsor will follow when conducting the AoA during the Mission Solutions
Analysis (MSA) phase. In addition to building the plan and submitting it for approval, the
component or agency must submit a memorandum to the MDA for ACAT I programs that ensure
the completion of the AoA within nine months. Only the Secretary of Defense or his/her delegate
can waive this nine-month window.

ANALYSIS OF
ALTERNATIVES (AOA)

AoA Final Report – The final Study Advisory Group (SAG) will meet either 55 business days before
the next milestone’s request for proposal (RFP) or no later than nine months after the start of the
AoA. The AoA Sponsor provides the final AoA to DCAPE no later than 40 business days after
briefing the final SAG. DCAPE evaluates the AoA and provides a memorandum to the MDA no later
than 40 business days after receiving the AoA Final Report from the component (this
memorandum may be received after the Developmental Request for Proposal Release Decision
(DRFPRD) or Milestone A. The sponsor also sends copies to the DoD Component head or other
organization or principal staff assistant assessing whether the analysis was completed consistent
with DCAPE Study Guidance and the DCAPE-approved Study Plan)

ALTERNATIVE SYSTEM
REVIEW (ASR)

The Alternative Systems Review (ASR) should be conducted typically after the completion of the
analysis of alternatives (AoA). The system parameters should be defined based on the trade off
among cost, schedule, and risks.

The inputs of an ASR include:
•The AoA results.
•The preferred materiel solution.
•The draft concept of operations (CONOPS).

The outputs of an ASR include:
•Refined description of the preferred materiel solution to support further development.
•Informed advice to the user-developed draft Capability Development Document (CDD) required
at Milestone A.

CAPABILITIES BASED
ASSESSMENT (CBA)

A Joint Capabilities Integration and Development System (JCIDS) analytic process. The CBA
identifies capability requirements and associated capability gaps. Results of a CBA or other
study provide the source material for one or more Initial Capabilities Documents (ICDs), or
other JCIDS documents in certain cases when an ICD is not required

A number of DoDAF views are to be used to capture results of a CBA, facilitating reuse in
JCIDS documents, acquisition activities, and capability portfolio management. When one
or more studies or analyses are used in place of a CBA, the Sponsor may need to
consolidate the data from those studies into a single set of DoDAF products appropriate for
the scope of the ICD.

Design for
Diagnosability

• Design for Diagnosability is a
systems engineering and reliability
principle that focuses on making a
system easy to detect, isolate, and
identify faults during operation and
maintenance. It’s a proactive design
approach—integrated from the
early stages—to ensure that when
something goes wrong, you can
quickly and accurately figure out
what and where the problem is.

Design for
Diagnosability

Design Techniques
• Built-In Test Equipment (BITE)
Integrated electronics or software that perform self-tests
and report failures.
• Modularization
Design the system so faulty modules can be quickly
replaced (Line Replaceable Units, LRUs).
• Clear Feedback & Alerts
Use standardized fault codes, graphical interfaces, or verbal
alerts to convey what failed and why.
• Redundancy with Isolation
Not just having backups, but also the ability to tell which
path/component failed.
• Accessible Test Points
Place connectors, pads, or software hooks to measure
critical signals without dismantling the system.

Design for
Diagnosability

• Consider a UAV system as an example. A UAV
propulsion system is designed for diagnosability
by:

• Embedding ESC telemetry (RPM, current,
temperature) into the flight controller logs.

• Using vibration sensors near motors to detect
early bearing wear.

• Assigning unique error codes for motor
overheat vs. ESC overcurrent.

• Designing the wiring harness with color-coded
quick-disconnects for fast replacement

PART II
VERIFICATION AND
VALIDATION

Verification vs validation
• Verification:

 "Are we building the product right”.

• The software should conform to its specification.

• Validation:
 "Are we building the right product”.

• The software should do what the user really requires.

Definitions

V&V – a system engineering discipline employing
a rigorous methodology for evaluating and
assessing the correctness and quality of software
throughout the software life cycle.

Verify a developers process is technically sound.

V&V and QA

V&V and QA are not the same, but compliment each other.

V&V usually focuses on ensuring the requirements are being
met, the overall project is focused on the correct objectives,
and risk is being managed.

QA is focused on the day to day aspects of a project and is
used to determine if procedures are followed

V&V Concepts
• Benefits of V&V

• Early detection leads to a better solution rather than
quick fixes

• Validating the solution is solving the “right problem”
against software requirements

• Objective evidence of software and system compliance to
quality standards

• Support process improvements with an objective
feedback on the quality of development process and
products

V & V goals

• Verification and validation should
establish confidence that the software
is fit for purpose

• This does NOT mean completely free
of defects

• Rather, it must be good enough for its
intended use and the type of use will
determine the degree of confidence
that is needed

V & V
planning

Careful planning is required to get the
most out of testing and inspection
processes

Planning should start early in the
development process

The plan should identify the balance
between static verification and testing

Test planning is about defining standards
for the testing process rather than
describing product tests

Planning
for V&V

Scope of work

Software Integrity Levels

Development of the Software V&V Plan
(SVVP)

Cost of V&V

Planning
for V&V
(cont)

V&V is more effective when initiated
during the acquisition process and
throughout the life cycle of the software.

V&V has importance levels or called
“Integrity Levels”

Example

• Medical device – high level

• Personnel record-keeping system – low level

Integrity
Levels

The level is a range of values that represent
software complexity, criticality, risk, safety level,
security level, desired performance, reliability, or
other project-unique characteristics.

Each level defines the minimum required V&V
tasks.

ANSI/IEEE Std 1012 defines four levels. Level 4 is
assigned to high-assurance or critical systems

Life Cycle
V&V Tasks

Acquisition V&V

Supply V&V

Development V&V (Concept, Requirements, Design,
Implementation)

Development V&V (Test)

Development V&V (Installation and Checkout)

Operation V&V

Maintenance V&V

V&V
Techniques
and
Methods

Audits, Reviews, and
Inspection

Analytic Techniques

Dynamic Techniques

Audits, Reviews, and
Inspection

• V&V use these techniques to verify the
software during its development
process

• Peer Reviews
• Documentation inspections
• Requirements/design/code reading
• Test witnessing
• Installation audits

Analytic Techniques

Static analysis of the software (i.e,
requirements, design, or code) using graphical,
mathematical formulas or diagrams.

Effective in error detection at the software
unit level

Analytic
Techniques

Control (data) flow diagramming

Interface input/output/process
diagramming

Algorithm and equation analysis

Database analysis

Sizing and timing analysis

Proof of correctness

What to look for

• The number of iterations the algorithm requires.
In any algorithm, the process will need to be
repeated (at least for sorting or searching
algorithms). The number of iterations required,
both on average, and worst case, is one way to
measure the efficiency of the algorithm.

• The amount of resources required. Any
algorithm will require a certain amount of
resources, usually RAM (Random Access
Memory). The resources required, is yet another
way to evaluate the efficiency of an algorithm.

Big O
Analysis

• Perhaps the most common way to formally evaluate
the efficacy of a given algorithm is Big O notation
(Mathworld 2005). This method is measure of the
execution of an algorithm, usually the number of
iterations required, given the problem size n. In sorting
algorithms n is the number of items to be sorted. .
Stating some algorithm f(n) = O(g(n)) means it is less
than some constant multiple of g(n). The notation is
read, "f of n is big oh of g of n". This means that saying
an algorithm is 2N, means it will have to execute 2
times the number of items on the list. Big O notation
essentially measures the asymptotic upper bound of a
function. Big O is also the most often used analysis.

• Big O Notation was first introduced by the
mathematician Paul Bachmann in his 1892 book
Analytische Zahlentheorie. The notation was
popularized in the work of another mathematician
named Edmund Landau. Because Landaue was
responsible for popularizing this notation. it is
sometimes referred to as a Landau symbol.

Big O Analysis

• Omega notation is the opposite of Big O notation. It is the asymptotic
lower bound of an algorithm and gives the best-case scenario for that
algorithm. It gives you the minimum running time for an algorithm
(Cormen 2001).

• Theta notation combines Big O and Omega to give the average case
(average being arithmetic mean in this situation) for the algorithm. In
our analysis we will focus heavily on the Theta, also often referred to
as the Big O running time. This average time gives a more realistic
picture of how an algorithm executes (Cormen 2001).

• Note: It can be confusing when a source refers to a Big O running time
other than a theta. In writing this paper I found several online sources
that used O notation, when clearly what they where providing was
actually .

Space
Complexity

This topic is defined in different ways in different
sources. One common definition is the amount of
memory space required to solve an instance of the
problem, as a function of the input. Time complexity
is simply the amount of time it takes to execute an
algorithm. Obviously, these both relate to what is
often called time-space complexity.

Space complexity is normally considered to have two
different spaces: Input space and Auxiliary space. As
the name suggests, auxiliary space is that space
needed, other than what is needed for input.

FYI, my recommendation for a basic algorithm book
has always been Cormen, Thomas H.; Leiserson,
Charles E.; Rivest, Ronald L.; Stein, Clifford.
Introduction to Algorithms, third edition. MIT Press.

For something more advanced: Peter Bürgisser.
Completeness and Reduction in Algebraic Complexity
Theory (Algorithms and Computation in Mathematics)

Cyclomatic
Complexity

In 1976 Thomas McCabe developed cyclomatic complexity (McCabe, 1976). Cyclomatic complexity is
defined as the number of linearly independent paths in a given body of code (Pawade, Dave, & Kamath,
2016). Thus, if there are no code branches such as in if statements, switch statements, or other decision
points, then there is a cyclomatic complexity of 1. There exists only one linearly independent path
through the code (Ukić, Maras, & Šerić, 2018). Put more formally, the cyclomatic complexity of source
code is defined using a control flow graph of the program or function (Ebert & Cain, 2016). This is a
directed graph wherein the nodes are the basic blocks of the program or function and the edges connect
those nodes. The cyclomatic complexity is defined as:

 C = E − N + 2P, where

 E = the number of edges of the graph.

 N = the number of nodes of the graph.

 P = the number of connected components

 This is a useful approach for measuring complexity because it integrates graph theory. McCabe only
integrated the most basic elements of graph theory (McCabe, 1976), however, once one has expressed a
problem as a graph, the full power of graph theory could be applied. Put another way, it would not be an
overly arduous task to expand this definition to incorporate a range of graph theory elements such as
weighted nodes and edges, incidence functions relating the nodes, or even more sophisticated aspects of
graph theory such as spectral graph theory (Easttom, 2020b).

Halstead Metrics

The field of computational complexity is
rather robust and well developed. This is
evident from the multiple modalities of
studying computational complexity. Within
that context there are several methods for
calculating complexity. In 1977 Maurice
Halstead put forth what are now known as
Halstead complexity measures or metrics
.These are metrics for measuring software
complexity. Halstead posited several metrics
for software complexity (shown in table 3.

Halstead Metrics

Metric Value

n1 Number of distinct operators.

n2 Number of distinct operands.

N1 Total number of occurrences of operators.

N2 Total number of occurrences of operands.

n1* Number of potential operators.

n2* Number of potential operands.

Dynamic
Techniques

Involve the
execution of the

software.

Effective at error
detection when
software units

are combined at
the integrated
subsystem and
system levels

Dynamic
Techniques

• Simulation and modeling

• Hardware/software benchmark testing

• Hardware-in-the loop testing – the
system config. is heavily instrumented
to simulate different test scenarios to
be created.

• Scientific testing – coding of the target
requirements/design using a general-
purpose computer and higher order
language.

Measurement
Applied to

V&V

• Uses various calculated
measurements to determine when
the analysis or testing is completed,
where errors are mostly likely to
occur in the software, and what
development process or function is
causing the largest number of
errors.

• Based on these measurements, the
software engineer can determine
where to concentrate their efforts.

Measurement
Methods

Software Structural Metrics – measures
pinpoint program logic having greater logical
or data complexity

Statistics-Based Measurements – examines
program error rates, categorization of errors,
and error discovery time periods

Trend Analysis – analyzing percent of errors
with historical data

Prediction-Based Measurement – using
reliability models to determine how much
analysis and test effort to be done.

Acronyms

Engel, Avner. Verification, Validation, and Testing of Engineered Systems (Wiley Series in Systems Engineering
and Management Book 73)

Availability

Inherent Availability: System availability assuming corrective
maintenance is only undertaken when the system fails

IA = MTBF/ (MTBF+MTTR)

Achieved Availability: System availability assuming maintenance
is undertaken for both corrective and preventive actions and all
logistics

AA = MTBMA/(MTBMA +MNT)

Operational Availability: System availability assuming
maintenance is undertaken for both corrective and preventive
actions and average logistic delays are encountered:

OA = MTBMA/(MTBMA + MDT)

Engel, Avner. Verification, Validation, and Testing of Engineered
Systems (Wiley Series in Systems Engineering and Management Book
73)

PART III More Modeling

Views and Viewpoints

• Consistent with IEEE 1471

• Viewpoint represents stakeholders, their concerns/purpose/intent, and
construction rules for specifying a view

• View is a read only mechanism that captures the model subset that
addresses the stakeholder concerns

• Realizes the viewpoint

• Relationships between model elements established in model and not between
views

IEEE 1471

• IEEE 1471 (section 5.3) prescribes that a viewpoint contains:
• a) A viewpoint name

• b) The stakeholders to be addressed by the viewpoint

• c) The concerns to be addressed by the viewpoint

• d) The language, modeling techniques, or analytical methods to be used in
constructing a view based upon the viewpoint

• e) The source, for a library viewpoint (the source could include author, date, or
reference to other documents, as determined by the using organization)

Power Subsystem
Breakdown

• Block Definition
Diagram Used to Specify
System Hierarchy and
Classification

bdd [block] HSUV [PowerSubsystem Breakdown]

«block»
PowerSubsystem

«block»
ElectricMotor

Generator

«block»
FrontWheel

«block»
accelerator

«block»
FuelTankAssembly

«block»
Differential

«block»
Transmission

«block»
InternalCombustionEngine

«block»
FuelInjector

lfw

4

«block»
BatteryPack

«block»
ElectricalPowerController

«block»
PowerControlUnit

«block»
FuelPump

«block»
BrakePedal

«block»
WheelHubAssembly

rfw

Power Subsystem IBD

55

ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator]

emg:ElectricMotor

Generator

trsm:Transmission

ice:InternalCombustionEngine

acl:accelerator

ecu:PowerControlUnit

ft:FuelTankAssy

dif:Differential

rfw:ChassisSubsytem
.FrontWheel

lfw:ChassisSubsytem
.FrontWheel

Port:FuelTankFitting

Port:ICEFuelFitting

fuelDelivery

torqueOut:Torque

torquein:Torque

spline

fuelSupply:Fuel

epc:ElectricalPower

Controller
bp:BatteryPack

i1:Electric
Current

i2:Electric
Current

fp:FuelPump

fi:FuelInjector

fdist
bp:BrakeSubsystem
.BrakePedal

<>

<
>

<><>

4

fuelReturn:Fuel

<>

<>

<
>

<
>

g1:Torque

t2
:T

o
rq

u
e

t1
:T

o
rq

u
e

ice

ctrl

I_ICECmds

I_ICECmds

ctrl

ctrl

I_ICEData I_ICEData

trsmepc

c3

c2

c1

I_IEPCCmdI_IEPCData

I_IEPCDataI_EPCCmd

I_TRSMData

I_TRSMCmd

I_TRSMCmd

I_TRSMData

<
>

<
>

<
>

rightHalfShaft

<
>

<
>

<
>

leftHalfShaft

Internal Block Diagram Used to Specify Interconnection
Among Parts in Context of Enclosing Block

Part

Connector

Enclosing

Block

UML
CLASS

DIAGRAM

Sensor

name/id

type

location

area

characteristics

identify()

enable()

disable()

reconf igure ()

UML STATE
DIAGRAM

Figure 7.6 Preliminary UML st at e diagram for a phot ocopier

Init ializat ion

syst em st at us=“not ready”

display msg = “please wait ”

display st at us = blinking

ent ry/ swit ch machine on

do: run diagnost ics

do: init iat e all subsyst ems

t urn copier
“on“

subsyst ems

ready
syst em st at us=“Ready”

display msg = “ent er cmd”
display st at us = st eady

ent ry/ subsyst ems ready

do: poll user input panel
do: read user input

do: int erpret user input

Reading

commands

syst em st at us=“Copying”

display msg= “copy count =”
display message=#copies

display st at us= st eady

ent ry/ st art copies

do: manage copying

do: monit or paper t ray

do: monit or paper f low

Making copies

st art copies

syst em st at us=“Jammed”

display msg = “paper jam”

display message=locat ion

display st at us= blinking

ent ry/ paper jammed

do: det ermine locat ion
do: provide correct ive msg.

do: int errupt making copies

problem diagnosis

paper jammed

syst em st at us=“ load paper”

display msg= “ load paper”

display st at us= blinking

ent ry/ paper empt y

do: lower paper t ray
do: monit or f ill swit ch

do: raise paper t ray

load paper

paper t ray empt y

not jammed

paper f ull

t urn copier “of f ”

not jammed

copies complet e

Ports Approach

• Ports represent block interaction points via which Blocks provide
or consume data/material/energy or services

• Support specification of interfaces on a block independent of a
specific usage (e.g. this component requires 110 volts of power
input)

• Approach is to specialize two port types
• Flow ports

• Port type specifies what can flow in our out of
block/part

• A connection point through which there is a flow of
information, material, or energy (I/O)

• Typically asynchronous flow where producer is not
aware when/who consumes the flow

• Client server ports
• Service oriented (request-reply) peer2peer interaction
• Typically synchronous communication
• Specified similar to UML2.0 ports using

required/provided interfaces detailing the set of
provided/required services

• Allow signal exchanges for compatibility

FlowPorts
• Additional considerations

• Simple (natural) way for SEs to specify I/O via the port

• Address the common case of atomic FlowPorts

• Allow both signal flow and data/block instance flow

• FlowPorts Specification
• I/O is specified using an interface stereotyped FlowSpecification

• FlowSpecification consists of properties stereotyped FlowProperties

• FlowProperty has a direction attribute: in, out, inOut

• FlowProperties can be typed by ValueTypes, Block, and Signals

• isConjugate promotes reuse of flowSpecifications

• Atomic FlowPorts
• It is common that a FlowPort flows a single item type

• In this case the port is directly typed by the item type (Block or Value)

• Direction property specify the direction

• Compatibility rules on ports facilitate interface compatibility

Item Flows Approach

• Distinct from what can flow via the port
specification

• Supports compact and intuitive modeling of
physical flows

• Supports top down description of flows without
imposing behavioral method (e.g. activities,
state, interactions)

• Is aligned with behavior thru refinement and
allocation

• Facilitates flow allocations from an object node,
message, or signal from a behavioral diagram

• Properties of item flow can be specified and
constrained in parametric diagram

Power Subsystem IBD
ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator]

emg:ElectricMotor

Generator

trsm:Transmission

ice:InternalCombustionEngine

acl:accelerator

ecu:PowerControlUnit

ft:FuelTankAssy

dif:Differential

rfw:ChassisSubsytem
.FrontWheel

lfw:ChassisSubsytem
.FrontWheel

Port:FuelTankFitting

Port:ICEFuelFitting

fuelDelivery

torqueOut:Torque

torquein:Torque

spline

fuelSupply:Fuel

epc:ElectricalPower

Controller
bp:BatteryPack

i1:Electric
Current

i2:Electric
Current

fp:FuelPump

fi:FuelInjector

fdist
bp:BrakeSubsystem
.BrakePedal

<>

<
>

<><>

4

fuelReturn:Fuel

<>

<>

<
>

<
>

g1:Torque

t2
:T

o
rq

u
e

t1
:T

o
rq

u
e

ice

ctrl

I_ICECmds

I_ICECmds

ctrl

ctrl

I_ICEData I_ICEData

trsmepc

c3

c2

c1

I_IEPCCmdI_IEPCData

I_IEPCDataI_EPCCmd

I_TRSMData

I_TRSMCmd

I_TRSMCmd

I_TRSMData

<
>

<
>

<
>

rightHalfShaft

<
>

<
>

<
>

leftHalfShaft

Client server port

Flow port

Item flow

Connector

Parametrics
• Used to express constraints (equations) between value properties

• Provides support to engineering analysis (e.g. performance, reliability, etc)
• Reusable (e.g. F=m*a is reused in many contexts)
• Non-causal (i.e. declarative statement of the invariant without specifying

dependent/independent variables)

• Constraint block defined as a simple extension of block
• Packages UML constraint so they are reusable and parameterized
• Constraint and constraint parameters are specified
• Expression language can be formal (e.g. MathML, OCL …) or informal
• Computational engine is defined by applicable analysis tool and not by SysML

• Parametric diagram represents the usage of the constraints in an analysis
context

• Binding of constraint usage to value properties of blocks (e.g. vehicle mass bound
to F= m * a)

• Can use nested notation or dot notation

• MOE’s and objective functions integrated with Parametrics to support trade
studies and engineering analysis

Defining
Vehicle

Dynamics

bdd [package] HSUVAnalysis [Definition of Dynamics]

parameters

whlpowr:Real

Cd:Real

Cf:Real

tw:Real

tp:Real

v:Real

i:Real

Constraints

{tp(hp) = whlpowr - (Cd*v)

- (Cf*tw*v)}}

«constraint»
PowerEquation

parameters

tw:Real

dt:Real

tp:Real

a:Real

Constraints

{a(g) = F/m = P*t/m = (550/

32)*tp(hp)*delta-t*twi}

«constraint»
AccelerationEquation

parameters

dt:Real

v:Real

a:Real

Constraints

{v(n+1)=v(n)+dv = v(n) + a*dt}

{v(n+1 =v(n)+a*32*3600/5280*dt}

«constraint»
VelocityEquation

parameters

dt:Real

v:Real

x:Real

Constraints

{x(n+1)=x(n)+dx(dt)=x(n)+v*dt}

{x(n+1)=x(n)+v*5280/3600*dt}

«constraint»
PositionEquation

parameters

whlpowr:Real

Cd:Real

Cf:Real

tw:Real

acc:Real

vel:Real

incline:Real

«constraint»
StraightLine

VehicleDynamics

Evaluating Vehicle Dynamics
par [constraintBlock] StraightLineVehicleDynamics

Accelleration

Equation

VelocityEquation

PostionEquation

PowerEquation

«value»
globalTime.delta-t

whlpwr twCd Cf

tp

tp

dt

dt

dt

tw

tw

a

a

v

v

acc

vel

Cf

Cd

whlpwr

v

x

«value»
HSUV.position

incline

i

Evaluating
Measures of
Effectiveness

par [constraintBlock] MeasuresOfEffectiveness [HSUV MOEs]

«objectiveFunction»

:MyObjectiveFunction

{CE = ∑ Wi*Pi}

«moe»

HSUValt1.CostEffectiveness

«moe»

HSUValt1.FuelEconomy

«moe»

HSUValt1.Zero60Time

«moe»

HSUValt1.CargoCapacity

«moe»

HSUValt1.QuarterMileTime

Instance of

constraint block is

identical for each

alternative

«moe»

HSUValt1.UnitCost

:EconomyEquation
f:

:MaxAcceleration

Analysis

q:

z:

:CapacityEquation
vc:

:UnitCostEquation
uc:

p
4
:

p
1
:

p
2
:

p
3
:

p
5
:

CE:

66

Distiller Example

Dirty water

@ 20 deg C

Heat Dirty water

To 100 deg C

Heat to Dirty

water

Boil Dirty water

Dirty water

@ 100 deg C
Steam

Residue

and

Condense

steam

Drain

Residue

Pure

water

Disposed

residue

and

Heat to Boil

water

Energy to

condense

Distill
Water

Activity
Diagram
(Initial)

«effbd»
act [activity] DistillWater [Simple Starting Point)

a1:HeatWater a2:BoilWater

a3:CondenseSteam

a4:DrainResidue

coldDirty:H2O

[liquid]

hotDirty:H2O

[liquid]

steam:H2O

[gas]

pure:H2O

[liquid]

hiPress:Residue loPress:Residueexternal:Heatrecovered:Heat

recovered:Heat

Note: these are

the same thing!

Distill Water
Activity

Diagram
(Continuous

Flow
Modeling)

act [activity] DistillWater [Parallell Continuous Activities)

a1:HeatWater

a2:BoilWater

a3:CondenseSteam

a4:DrainResidue

«continuous»
coldDirty:H2O

[liquid]

«continuous»
hotDirty:H2O

[liquid]

«continuous»
steam:H2O

[gas]

«continuous»
pure:H2O

[liquid]

hiPress:Residue

loPress:Residue

«continuous»
external:Heat

«continuous»
recovered:Heat

Interactions
• Sequence diagrams provide representations for

message based behavior
• Represents flow of control

• Less effective than activities for representing inputs from multiple
sources

• UML 2 sequence diagrams significantly more scalable by
providing reference sequences, control logic, and lifeline
decomposition

• Timing diagrams provide representations for typical
system timelines and value properties vs time

• No change to UML
• Minor clarification on continuous time representations

Black Box Sequence
(StartVehicle)

sd StartVehicleBlackBox

driver:Driver
hybridSUV:HybridSUV

ref StartVehicleWhiteBox

1: StartVehicle()

turnIgnitionToStart

References Lifeline Decomp
For White Box Interaction

White Box Sequence
(StartVehicle)

sd StartVehicleWhiteBox

ecu:PowerControlUnit epc:ElectricalPowerController

1.1: Enable

1: StartVehicle

1.2:ready

Requirements

• Requirements represents a text based requirement
• Minimal properties specified for id and text

based on user feedback
• Stereotype mechanism used to categorize

requirements (e.g. functional, physical)
• Able to specify constraints on what design

elements can satisfy the requirement (refer
to Appendix C.2)

• Stereotype of class (abstract) without instances
• Requirements containment used to specify

requirements hierarchy as a collection of
requirements (e.g., a specification)

• SST uses cross hairs notation vs black
diamond composition to be consistent with
containment semantics

• Requirements relationships based on subclasses of
dependency

• Derive, Satisfy, Verify, Refine, ..

72

Dependencies
• Used to specify relationships among

requirements (other uses as well)
• Different concept for SE’s with arrow

direction reversed from typical
requirements flow-down

• Refer to next slide
• Represents a relationship between client and

supplier elements
• Client depends on supplier

• A change in supplier results in a change
in client

• Application to requirements: A change
in requirement (supplier) results in a
change in design element that satisfies
it (client) or requirement derived from
it (client)

Example of
Derive/Satisfy
Requirement
Dependencies

Client

Supplier

«requirement»
Power

«requirement»
Accelleration

«requirement»
CargoCapacity

«requirement»
OffRoadCapability

«deriveReqt» «deriveReqt» «deriveReqt»

«block»
PowerSubsystem

«satisfy»

Client

Supplier

Requirements Breakdown

req [package] HSUVRequirements [HSUV Specification]

«requirement»
Eco-Friendliness

«requirement»
Performance

«requirement»
Capacity«requirement»

Ergonomics

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
OffRoadCapability

«requirement»
Accelleration

Id = R1.2.1

text = The vehicle shall meet Ultra-Low

Emissions Vehicle standards.

«requirement»
Emissions

«requirement»
PassengerCapacity

«requirement»
FuelCapacity

«requirement»
CargoCapacity

HSUVSpecification

«requirement»
Qualification

«requirement»
SafetyTest

Requirements Derivation

req [package] HSUVRequirements [Requirement Derivation]

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
RegenerativeBraking

«requirement»
PowerSourceManagement

«requirement»
Power

«deriveReqt»«deriveReqt»

«deriveReqt»

«deriveReqt»

«requirement»
Accelleration

«requirement»
CargoCapacity

«requirement»
FuelCapacity

«requirement»
OffRoadCapability

«requirement»
Range

«deriveReqt»«deriveReqt»

«deriveReqt» «deriveReqt» «deriveReqt»

RefinedBy

HSUVStructure::HSUV.

HSUVOperationalStates
«rationale»
Power delivery must happen by coordinated

control of gas and electric motors.

reference= “Hybrid Design Guidance”

Reqts Refinement/Verification

req [package] HSUVRequirements [Acceleration Requirement Refinement and Verification]

«requirement»
Acceleration

HSUVUseCases:

:Accelerate

«block»
PowerSubsystem

«refineReqt»

«satisfy»

«requirement»
Power

«deriveReqt»

«testCase»
Max Acceleration

«verify»

Requirements Tables & Trees

table [requirement] Performance [Tree of Performance Requirements]

table [requirement] Performance [Decomposition of Performance Requirement]

table [requirement] Capacity [Decomposition of Capacity Requirement]

id name text

4 Capacity

The Hybrid SUV shall carry 5 adult passengers, along with

sufficient luggage and fuel for a typical weekend campout.

4.1 CargoCapacity

The Hybrid SUV shall carry sufficient luggage for 5 people

for a typical weekend campout.

4.2 FuelCapacity

The Hybrid SUV shall carry sufficient fuel for a typical

weekend campout.

4.3 PassengerCapacity The Hybrid SUV shall carry 5 adult passengers.

id name text

2 Performance

The Hybrid SUV shall have the braking, acceleration, and off-

road capability of a typical SUV, but have dramatically better

fuel economy.

2.1 Braking

The Hybrid SUV shall have the braking capability of a typical

SUV.

2.2 FuelEconomy

The Hybrid SUV shall have dramatically better fuel economy

than a typical SUV.

2.3 OffRoadCapability

The Hybrid SUV shall have the off-road capability of a

typical SUV.

2.4 Acceleration

The Hybrid SUV shall have the acceleration of a typical

SUV.

id name relation id name relation id name

2.1 Braking deriveReqt d.1 RegenerativeBraking

2.2 FuelEconomy deriveReqt d.1 RegenerativeBraking

2.2 FuelEconomy deriveReqt d.2 Range

4.2 FuelCapacity deriveReqt d.2 Range

2.3 OffRoadCapability deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement

2.4 Acceleration deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement

4.1 CargoCapacity deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement

Power Subsystem Breakdown

bdd [block] HSUV [PowerSubsystem Breakdown]

«block»
PowerSubsystem

«block»
ElectricMotor

Generator

«block»
FrontWheel

«block»
accelerator

«block»
FuelTankAssembly

«block»
Differential

«block»
Transmission

«block»
InternalCombustionEngine

«block»
FuelInjector

lfw

4

«block»
BatteryPack

«block»
ElectricalPowerController

«block»
PowerControlUnit

«block»
FuelPump

«block»
BrakePedal

«block»
WheelHubAssembly

rfw

Power
Subsystem IBD

ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator]

emg:ElectricMotor

Generator

trsm:Transmission

ice:InternalCombustionEngine

acl:accelerator

ecu:PowerControlUnit

ft:FuelTankAssy

dif:Differential

rfw:ChassisSubsytem
.FrontWheel

lfw:ChassisSubsytem
.FrontWheel

Port:FuelTankFitting

Port:ICEFuelFitting

fuelDelivery

torqueOut:Torque

torquein:Torque

spline

fuelSupply:Fuel

epc:ElectricalPower

Controller
bp:BatteryPack

i1:Electric
Current

i2:Electric
Current

fp:FuelPump

fi:FuelInjector

fdist
bp:BrakeSubsystem
.BrakePedal

<>

<
>

<><>

4

fuelReturn:Fuel

<>

<>

<
>

<
>

g1:Torque

t2
:T

o
rq

u
e

t1
:T

o
rq

u
e

ice

ctrl

I_ICECmds

I_ICECmds

ctrl

ctrl

I_ICEData I_ICEData

trsmepc

c3

c2

c1

I_IEPCCmdI_IEPCData

I_IEPCDataI_EPCCmd

I_TRSMData

I_TRSMCmd

I_TRSMCmd

I_TRSMData

<
>

<
>

<
>

rightHalfShaft

<
>

<
>

<
>

leftHalfShaft

	Slide 1: Lesson 5
	Slide 2: Case 4
	Slide 3
	Slide 4: Engineering – Lifecycle
	Slide 5
	Slide 6: Architecture definition
	Slide 7: Architecture definition
	Slide 8: Design definition process
	Slide 9: Physical Architecture
	Slide 10: A Design property
	Slide 11: Activities in the architecture process
	Slide 12: Artifacts of the architecture process
	Slide 13: Design definition process
	Slide 14: Critical design review
	Slide 15: Analysis of Alternatives (AoA)
	Slide 16: Analysis of Alternatives (AoA)
	Slide 17: Analysis of Alternatives (AoA)
	Slide 18: Alternative System Review (ASR)
	Slide 19: Capabilities Based Assessment (CBA)
	Slide 20: Design for Diagnosability
	Slide 21: Design for Diagnosability
	Slide 22: Design for Diagnosability
	Slide 23: Part ii verification and validation
	Slide 24: Verification vs validation
	Slide 25: Definitions
	Slide 26: V&V and QA
	Slide 27: V&V Concepts
	Slide 28: V & V goals
	Slide 29: V & V planning
	Slide 30: Planning for V&V
	Slide 31: Planning for V&V (cont)
	Slide 32: Integrity Levels
	Slide 33: Life Cycle V&V Tasks
	Slide 34: V&V Techniques and Methods
	Slide 35: Audits, Reviews, and Inspection
	Slide 36: Analytic Techniques
	Slide 37: Analytic Techniques
	Slide 38: What to look for
	Slide 39: Big O Analysis
	Slide 40: Big O Analysis
	Slide 41: Space Complexity
	Slide 42: Cyclomatic Complexity
	Slide 43: Halstead Metrics
	Slide 44: Halstead Metrics
	Slide 45: Dynamic Techniques
	Slide 46: Dynamic Techniques
	Slide 47: Measurement Applied to V&V
	Slide 48: Measurement Methods
	Slide 49
	Slide 50: Availability
	Slide 51: PART III
	Slide 52: Views and Viewpoints
	Slide 53: IEEE 1471
	Slide 54: Power Subsystem Breakdown
	Slide 55: Power Subsystem IBD
	Slide 56: UML Class Diagram
	Slide 57: UML State Diagram
	Slide 58: Ports Approach
	Slide 59: FlowPorts
	Slide 60: Item Flows Approach
	Slide 61: Power Subsystem IBD
	Slide 62: Parametrics
	Slide 63: Defining Vehicle Dynamics
	Slide 64: Evaluating Vehicle Dynamics
	Slide 65: Evaluating Measures of Effectiveness
	Slide 66: Distiller Example
	Slide 67: Distill Water Activity Diagram (Initial)
	Slide 68: Distill Water Activity Diagram (Continuous Flow Modeling)
	Slide 69: Interactions
	Slide 70: Black Box Sequence (StartVehicle)
	Slide 71: White Box Sequence (StartVehicle)
	Slide 72: Requirements
	Slide 73: Dependencies
	Slide 74: Example of Derive/Satisfy Requirement Dependencies
	Slide 75: Requirements Breakdown
	Slide 76: Requirements Derivation
	Slide 77: Reqts Refinement/Verification
	Slide 78: Requirements Tables & Trees
	Slide 79: Power Subsystem Breakdown
	Slide 80: Power Subsystem IBD

