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Case 4

e Twice during the cold war nuclear war was
almost launched due to software glitches.
The first occurred at 2:25 am on June 3,
1980, systems at NORAD (United States)
showed various and changing numbers of
inbound missiles. This led to the launch of
the airborne command post and putting the
US nuclear systems on high alert. The cause
was tracked down to a single faulty chip that
was failing in a random fashion.

* The second incident occurred September
26, 1983. The early warning system for the
Soviet Union twice reported the launch of ‘
American ICBMs. Fortunately an officer with \
the Soviet Air Defense Force realized these e ), SRR | TN B
where false alarms. The error was caused by R e o RO o s P e o B L g O ‘
the systems satellite software not accounting S AT : AT LY ety |

for a rare alignment with high altitude clouds

causing a glare.
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Engineering — Lifecycle

NIST SP 800-60 addresses the role of security systems engineering within the
lifecycle of U.S. Government owned systems. This same lifecycle should be
applied to developing security in any environment. Thus, when implementing a
new intrusion detection system, or in implementing new network policies, one
should follow the ISO 15288 system development lifecycle (SEBok, 2018). That
standard includes the following clauses:

Clause 6.4.1 - Stakeholder Requirements Definition Process

Clause 6.4.2 - Requirements Analysis Process

Clause 6.4.3 - Architectural Design Process
Clause 6.4.4 - Implementation Process

Clause 6.4.5 - Integration Process

Clause 6.4.6 - Verification Process

Clause 6.4.7 - Transition Process

Clause 6.4.8 - Validation Process

Clause 6.4.9 - Operation Process

Clause 6.4.10 - Maintenance Process

Clause 6.4.11 - Disposal Process
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ARCHITECTURE
DEFINITION

As stated in ISO/ |EC/ IEEE 15288,
6.4.4.1] The purpose of the
Architecture Definition process is
to generate system architecture
alternatives, to select one or
more alternative( s) that frame
stakeholder concerns and meet
system requirements, and to
express this in a set of consistent
Views.




* Life cycle concepts

* System function definition

* System requirements

* System lunctional interface
idenufication

¢ System requirements
traceability

* Updated RVTM

* Design traceability

¢ Interface definition update
identification

* Life cycle constraints

e

ARCHITECTURE
DEFINITION

Controls
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* Prepare for architecture
definition

* Develop architecture
viewpoints

* Develop models and views
of candidate architectures

* Relate the architecture o
design

* Assess architecture
candidates

* Manage the selected
architecture

.

* Architecture definition
strategy

* System architecture
description

* System architecture
rationale

* Documentation tree

* Preliminary interface
definition

* Preliminary TPM needs

* Preliminary TPM data

* Architecture traccability

* Architecture definition
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DESIGN DEFINITION
PROCESS

* As stated in ISO/ IEC/ IEEE 15288,
[6.4.5.1] The purpose of the Design
Definition process is to provide sufficient
detailed data and information about the
system and its elements to enable the
implementation consistent with
architectural entities as defined in
models and views of the system
architecture.




PHYSICAL
ARCHITECTURE

e A physical architecture model is an arrangement of
physical elements, (system elements and physical
interfaces) that provides the solution for a product,
service, or enterprise. It is intended to satisfy logical
architecture elements and system requirements
ISO/IEC/IEEE 26702 (ISO 2007). It is implementable
through technological system elements. System
requirements are allocated to both the logical and
physical architectures. The resulting system
architecture is assessed with system analysis and
when completed becomes the basis for system
realization.

» -https://sebokwiki.org/wiki/Physical Architecture




A DESIGN
PROPERTY

* Adesign property is a property that is
obtained during system architecture and
created through the assignment of non-
functional requirements, estimates, analyses,
calculations, simulations of a specific aspect,
or through the definition of an existing
element associated with a system element, a
physical interface, and/or a physical
architecture. If the defined element complies
with a requirement, the design property will
relate to (or may equal) the requirement.
Otherwise, one has to identify any
discrepancy that could modify the
requirement or design property and detect
any deviations. .-
https://sebokwiki.org/wiki/Physical_Architect
ure




ACTIVITIES IN THE ARCHITECTURE

PROCESS

Partition and allocate
functional elements
to system elements

Constitute candidate
physical architecture
models.

Assess physical
architecture model
candidates and
select the most
suitable one

Synthesize the
selected physical
architecture model



ARTIFACTS OF
THE
ARCHITECTURE
PROCESS

PBD

(

Physical block diagrams )

SysML block definition diagrams (BDD

Internal block diagrams (IBD) (OMG 2010)

Executable architecture prototyping
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CRITICAL DESIGN
REVIEW

A multi-disciplined technical review, conducted at both system-level and component-
level, ensures that the initial product baseline is established. The component-level
CDRs should be successfully completed for each major component before conducting
the system-level CDR. It completes the process of defining the technical requirements
for each component, which are documented in the item performance specification of
each component. A successful completion of CDR provides a sound technical basis for
proceeding into fabrication, integration, and developmental test and evaluation. At
completion of the CDR, the initial product baseline is normally taken under contractor
configuration control at least until the physical configuration audit (PCA).



ANALYSIS OF
ALTERNATIVES (AOA)

The AoA assesses potential materiel solutions to mitigate the capability gaps documented in the
validated Initial Capabilities Document (ICD). The AoA focuses on identification and analysis of
alternatives, measures of effectiveness (MOE), cost, schedule, concepts of operation, and overall
risk. This includes the sensitivity of each alternative to possible changes in key assumptions or
variables. The AoA addresses trade space to minimize risk and also assesses critical technology
elements associated with each proposed materiel solution. This includes technology maturity,
integration risk, manufacturing feasibility, and, where necessary, technology maturation and
demonstration needs. The AoA normally occurs during the Materiel Solution Analysis (MSA) phase
of the Acquisition process, is a key input to the Capability Development Document (CDD), and
supports the materiel solution decision at Milestone A. (Sources: DoDI 5000.02 and JCIDS Manual)



ANALYSIS OF
ALTERNATIVES (AOA)

AoA Study Guidance - For potential and designated ACAT | programs, the Director for Cost
Assessment and Program Evaluation (DCAPE) prepares study guidance for the DoD Component
Head 40 business days prior to the Materiel Development Decision (MDD). The Milestone Decision
Authority (MDA) will include the study guidance with the MDD acquisition decision

memorandum. For ACAT Il and Il programs, Component AoA procedures apply.

AoA Study Plan - For ACAT | programs, the AoA Study Plan is developed by the component or
agency from the AoA Study Guidance issued by DCAPE and submitted 20 days prior to the

MDD. For ACAT | programs, the AoA study plan must be approved by DCAPE. The AoA Plan details
the approach the sponsor will follow when conducting the AoA during the Mission Solutions
Analysis (MSA) phase. In addition to building the plan and submitting it for approval, the
component or agency must submit a memorandum to the MDA for ACAT | programs that ensure
the completion of the AoA within nine months. Only the Secretary of Defense or his/her delegate
can waive this nine-month window.



ANALYSIS OF
ALTERNATIVES (AOA)

AoA Final Report — The final Study Advisory Group (SAG) will meet either 55 business days before
the next milestone’s request for proposal (RFP) or no later than nine months after the start of the
AoA. The AoA Sponsor provides the final AoA to DCAPE no later than 40 business days after
briefing the final SAG. DCAPE evaluates the AoA and provides a memorandum to the MDA no later
than 40 business days after receiving the AoA Final Report from the component (this
memorandum may be received after the Developmental Request for Proposal Release Decision
(DRFPRD) or Milestone A. The sponsor also sends copies to the DoD Component head or other
organization or principal staff assistant assessing whether the analysis was completed consistent
with DCAPE Study Guidance and the DCAPE-approved Study Plan)



ALTERNATIVE SYSTEM
REVIEW (ASR)

The Alternative Systems Review (ASR) should be conducted typically after the completion of the
analysis of alternatives (AoA). The system parameters should be defined based on the trade off
among cost, schedule, and risks.

The inputs of an ASR include:

*The AoA results.

*The preferred materiel solution.

*The draft concept of operations (CONOPS).

The outputs of an ASR include:
*Refined description of the preferred materiel solution to support further development.

*Informed advice to the user-developed draft Capability Development Document (CDD) required
at Milestone A.



CAPABILITIES BASED
ASSESSMENT (CBA)

A Joint Capabilities Integration and Development System (JCIDS) analytic process. The CBA
identifies capability requirements and associated capability gaps. Results of a CBA or other
study provide the source material for one or more Initial Capabilities Documents (ICDs), or
other JCIDS documents in certain cases when an ICD is not required

A number of DoDAF views are to be used to capture results of a CBA, facilitating reuse in
JCIDS documents, acquisition activities, and capability portfolio management. When one
or more studies or analyses are used in place of a CBA, the Sponsor may need to
consolidate the data from those studies into a single set of DoDAF products appropriate for
the scope of the ICD.



Design for
Diagnosability

* Design for Diagnosability is a
systems engineering and reliability
principle that focuses on making a
system easy to detect, isolate, and
identify faults during operation and
maintenance. It’s a proactive design
approach—integrated from the
early stages—to ensure that when
something goes wrong, you can
quickly and accurately figure out
what and where the problem is.

—




Design for
Diagnosability

Design Techniques

* Built-In Test Equipment (BITE)

Integrated electronics or software that perform self-tests
and report failures.

* Modularization

Design the system so faulty modules can be quickly
replaced (Line Replaceable Units, LRUs).

* Clear Feedback & Alerts

Use standardized fault codes, graphical interfaces, or verbal
alerts to convey what failed and why.

e Redundancy with Isolation

Not just having backups, but also the ability to tell which
path/component failed.

 Accessible Test Points

Place connectors, pads, or software hooks to measure
critical signals without dismantling the system.




Design for
Diagnosability

* Consider a UAV system as an example. A UAV y
propulsion system is designed for diagnosability A
by: .
* Embedding ESC telemetry (RPM, current,

temperature) into the flight controller logs.

* Using vibration sensors near motors to detect
early bearing wear.

e Assigning unique error codes for motor
overheat vs. ESC overcurrent.

* Designing the wiring harness with color-coded
guick-disconnects for fast replacement




PART i
VERIFICATION AND
VALIDATION




0[01

Verification vs validation

 Verification:
"Are we building the product right”.

* The software should conform to its specification.

* Validation:
"Are we building the right product”.

* The software should do what the user really requires.



Definitions

V&V — a system engineering discipline employing
a rigorous methodology for evaluating and
assessing the correctness and quality of software
throughout the software life cycle.

Verify a developers process is technically sound.




V&YV and QA

V&V and QA are not the same, but compliment each other.

V&YV usually focuses on ensuring the requirements are being

met, the overall project is focused on the correct objectives,
and risk is being managed.

QA is focused on the day to day aspects of a project and is
used to determine if procedures are followed




V&V Concepts

e Early detection leads to a better solution rather than
quick fixes

* Validating the solution is solving the “right problem”
against software requirements

* Objective evidence of software and system compliance to
quality standards

e Support process improvements with an objective
feedback on the quality of development process and
products



V & V godadls

e \/erification and validation should
establish confidence that the software
is fit for purpose

* This does NOT mean completely free
of defects

e Rather, it must be good enough for its
intended use and the type of use will
determine the degree of confidence
that is needed



V&V
planning

S S Q¥
1l

/A

Careful planning is required to get the
most out of testing and inspection
processes

Planning should start early in the
development process

The plan should identify the balance
between static verification and testing

Test planning is about defining standards
for the testing process rather than
describing product tests



Scope of work

S S Q¥
1l

Software Integrity Levels

Planning

for V&V

Development of the Software V&YV Plan
(SVVP)

E Cost of V&V




V&YV is more effective when initiated
during the acquisition process and
throughout the life cycle of the software.
P‘O N ﬂlﬂg V&V has importance levels or called
for \/&\/ “Integrity Levels”
(cont)

Example

e Medical device — high level
e Personnel record-keeping system — low level




Integrity
Levels

The level is a range of values that represent
software complexity, criticality, risk, safety level,
security level, desired performance, reliability, or
other project-unique characteristics.

Each level defines the minimum required V&V

tasks.

ANSI/IEEE Std 1012 defines four levels. Level 4 is
assigned to high-assurance or critical systems




Acquisition V&V

Supply V&V

Development V&V (Concept, Requirements, Design,
Implementation)

Life Cycle

Development V&YV (Test)

V&YV Tasks

Development V&V (Installation and Checkout)

‘ Operation V&V

// Maintenance V&V




Audits, Reviews, and

A
a

Inspection
V&V
Techniques -
(]ﬂd Analytic Techniques

Methods

% Dynamic Techniques




Audits, Reviews, and
INnspection

* V&V use these techniques to verify the
software during its development
process

* Peer Reviews

* Documentation inspections

* Requirements/design/code reading
* Test witnhessing

* Installation audits




Analytic Technigues

Static analysis of the software (i.e,
requirements, design, or code) using graphical,
mathematical formulas or diagrams.

Effective in error detection at the software
unit level




Analytic
Technigues

7

Control (data) flow diagramming

Interface input/output/process
diagramming

Algorithm and equation analysis

Database analysis

Sizing and timing analysis

Proof of correctness



What to look for

* The number of iterations the algorithm requires.
In any algorithm, the process will need to be
repeated (at least for sorting or searching
algorithms). The number of iterations required,
both on average, and worst case, is one way to
measure the efficiency of the algorithm.

* The amount of resources required. Any
algorithm will require a certain amount of
resources, usually RAM (Random Access
Memory). The resources required, is yet another
way to evaluate the efficiency of an algorithm.

9!Q?ions

\

réal‘e‘ (
: As‘ SUCCBSS

Strategy _ - Growth

Sol ufioens Business

Success

Sales
5 'Stratégy
Business! bl
Sol utions
- Success !
- Sal es =2
Gr owth strategy |
Business golutt?®



Big O
Analysis

Perhaps the most common way to formally evaluate
the efficacy of a given algorithm is Big O notation
(Mathworld 2005). This method is measure of the
execution of an algorithm, usually the number of
iterations required, given the problem size n. In sorting
algorithms n is the number of items to be sorted. .
Stating some algorithm f(n) = O(g(n)) means it is less
than some constant multiple of g(n). The notation is

read, "f of n is big oh of g of n". This means that saying
an algorithm is 2N, means it will have to execute 2
times the number of items on the list. Big O notation
essentially measures the asymptotic upper bound of a
function. Big O is also the most often used analysis.

Big O Notation was first introduced by the
mathematician Paul Bachmann in his 1892 book
Analytische Zahlentheorie. The notation was
popularized in the work of another mathematician
named Edmund Landau. Because Landaue was
responsible for popularizing this notation. it is
sometimes referred to as a Landau symbol.




Big O Analysis

* Omega notation is the opﬁosite of Big O notation. It is the asymp
lower bound of an algorithm and gives the best-case scenario for
algorithm. It gives you the minimum running time for an algorithm

(Cormen 2001).

* Theta notation combines Big O and Omega to give the average case
(average being arithmetic mean in this situation) for the algorithm. In
our analysis we will focus heavily on the Theta, also often referred to
as the Big O running time. This average time gives a more realistic
picture of how an algorithm executes (Cormen 2001).

* Note: It can be confusing when a source refers to a Big O running time
other than a theta. In writing this paper | found several online sources
that u”sed O notation, when clearly what they where providing was
actually .



Space
Complexity

This topic is defined in different ways in different
sources. One common definition is the amount of
memory space required to solve an instance of the
problem, as a function of the input. Time complexity
Is simply the amount of time it takes to execute an
alfgorithm. Obviously, these both relate to what is
often called time-space complexity.

Space complexity is normally considered to have two
different spaces: Input space and Auxiliary space. As
the name suggests, auxiliary space is that space
needed, other than what is needed for input.

FYI, my recommendation for a basic algorithm book
has always been Cormen, Thomas H.; Leiserson,
Charles E.; Rivest, Ronald L.; Stein, Clifford.
Introduction to Algorithms, third edition. MIT Press.

For something more advanced: Peter Biirgisser.
Completeness and Reduction in Algebraic Complexity
Theory (Algorithms and Computation in Mathematics,




Cyclomatic
Complexity

In 1976 Thomas McCabe developed cyclomatic complexity (McCabe, 1976). Cyclomatic complexity 1
defined as the number of linearly independent paths in a given body of code (Pawade, Dave, & Kamath,
2016). Thus, if there are no code branches such as in if statements, switch statements, or other decision
points, then there is a cyclomatic complexity of 1. There exists only one linearly independent path
through the code (Uki¢, Maras, & Seri¢, 2018). Put more formally, the cyclomatic complexity of source
code is defined using a control flow graph of the program or function (Ebert & Cain, 2016). This is a
directed graph wherein the nodes are the basic blocks of the program or function and the edges connect
those nodes. The cyclomatic complexity is defined as:

C=E — N + 2P, where

E = the number of edges of the graph.
N = the number of nodes of the graph.
P = the number of connected components

This is a useful approach for measuring complexity because it integrates graph theory. McCabe only
integrated the most basic elements of graph theory (McCabe, 1976), however, once one has expressed a
problem as a graph, the full power of graph theory could be applied. Put another way, it would not be an
overly arduous task to expand this definition to incorporate a range of graph theory elements such as
weighted nodes and edges, incidence functions relating the nodes, or even more sophisticated aspects of
graph theory such as spectral graph theory (Easttom, 2020b).



Halstead Metrics

The field of computational complexity 1s
rather robust and well developed. This 1s
evident from the multiple modalities of
studying computational complexity. Within
that context there are several methods for
calculating complexity. In 1977 Maurice
Halstead put forth what are now known as
Halstead complexity measures or metrics
.These are metrics for measuring software
complexity. Halstead posited several metrics
for software complexity (shown 1n table 3.




Halstead Metrics

_ Number of distinct operators.
_ Number of distinct operands.

Total number of occurrences of operators.
Total number of occurrences of operands.

_ Number of potential operators.
_ Number of potential operands.



Dynamic

Technigues

Involve the
execution of the
software.

Effective at error
detection when
software units

are combined at
the integrated
subsystem and
system levels




Simulation and modeling
Hardware/software benchmark testing

Hardware-in-the loop testing — the
system config. is heavily instrumented
to simulate different test scenarios to
be created.

Scientific testing — coding of the target
requirements/design using a general-
purpose computer and higher order
language.

Dynamic
Technigues



S~ O

* Uses various calculated
measurements to determine when
the analysis or testing is completed,
where errors are mostly likely to

occur in the software, and what I\/\eOSUFGmGHT
development process or function is '
causing the largest number of App“ed TO

errors. V&V

 Based on these measurements, the
software engineer can determine
where to concentrate their efforts. L o ...



Measurement
Methods

Software Structural Metrics — measures
pinpoint program logic having greater logical
or data complexity

Statistics-Based Measurements — examines
program error rates, categorization of errors,
and error discovery time periods

Trend Analysis — analyzing percent of errors
with historical data

Prediction-Based Measurement — using
reliability models to determine how much
analysis and test effort to be done.




Terms Meaning

Mean Time Between
MTBF i
Failures

Mean Time To Repair (cor-
MTTR

ACronyms

rective maintenance only)

Mean Time Between Main-

tenance Actions (corrective
MTBMA . .
and preventive mainte-

nance)

Mean Maintenance Time
MMT (corrective and preventative
maintenance)

Mean Downtime (includes
downtime due to active

maintenance and logistics

delays)

Engel, Avner. Verification, Validation, and Testing of Engineered Systems (Wiley Series in Systems Engineering
and Management Book 73)



Inherent Availability: System availability assuming corrective
maintenance is only undertaken when the system fails

IA = MTBF/ (MTBF+MTTR)

Achieved Availability: System availability assuming maintenance
is undertaken for both corrective and preventive actions and all
logistics

Availabllity

AA = MTBMA/(MTBMA +MNT)

Operational Availability: System availability assuming
maintenance is undertaken for both corrective and preventive
actions and average logistic delays are encountered:

// OA = MTBMA/(MTBMA + MDT)

Engel, Avner. Verification, Validation, and Testing of Engineered

Systems (Wiley Series in Systems Engineering and Management Book
73)




PART [l More Modeling



Views and Viewpoints

e Consistent with IEEE 1471

* Viewpoint represents stakeholders, their concerns/purpose
construction rules for specifying a view

* View is a read only mechanism that captures the model subset t
addresses the stakeholder concerns
* Realizes the viewpoint

* Relationships between model elements established in model and not betwee
VIewsS



IEEE 1471

IEEE 1471 (section 5.3) prescribes that a viewpoint cont
a) A viewpoint name
b) The stakeholders to be addressed by the viewpoint
c) The concerns to be addressed by the viewpoint

d) The language, modeling techniques, or analytical methods to be use
constructing a view based upon the viewpoint

e) The source, for a library viewpoint (the source could include author, dat
reference to other documents, as determined by the using organization)




Power Subsystem
Breakdown

- Block Definition
Diagram Used to Specify
System Hierarchy and
Classification
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Figure 7.6 Preliminary UML state diagram for a photocopier




Ports Approa

* Ports represent block interaction point
or consume data/material/energy or se
* Support specification of interfaces ona b

specific usage (e.g. this component requir@
input
e Approach is to specialize two port types
- * Flow ports

* Port type specifies what can flow in o
e block/part
e A connection point through which there |

- , information, material, or energy (1/0)
~—_ * Typically asynchronous flow where produce
' | aware when/who consumes the flow
e Client server ports
* Service oriented (request-reply) peer2peer intera
e Typically synchronous communication
e Specified similar to UML2.0 ports using

required/provided interfaces detailing the set of
provided/required services

Allow signal exchanges for compatibility




FlowPorts

e Additional considerations
* Simple (natural) way for SEs to specify I/O via the port

e Address the common case of atomic FlowPorts
» Allow both signal flow and data/block instance flow

* FlowPorts Specification
* |/Ois specified using an interface stereotyped FlowSpecification

* FlowSpecification consists of properties stereotyped FlowProperties
* FlowProperty has a direction attribute: in, out, inOut
* FlowProperties can be typed by ValueTypes, Block, and Signals
* isConjugate promotes reuse of flowSpecifications

e Atomic FlowPorts
* |tis common that a FlowPort flows a single item type
* In this case the port is directly typed by the item type (Block or Value)
* Direction property specify the direction

e Compatibility rules on ports facilitate interface compatibility



ltem Flows Ap§R

Distinct from what can flow viad

specification

Supports compact and intuitive m€

physical flows

Supports top down description of flo

imposing behavioral method (e.g. acti

state, interactions)

* |s aligned with behavior thru refineme

allocation

Facilitates flow allocations from an object nod

message, or signal from a behavioral diagram

Properties of item flow can be specified and

constrained in parametric diagram




Power Subsystem IBD

ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator
[blockd ystem V' Item flow
. epc:ElectricalPower emg:ElectricMotor
bp:BatteryPack Controller > Electri 1-Electri Generator
ctrl i2:Electric i1:Electric
[ Current Current
ow port
I_IEPCData |I_IEPCCPMd | e
acl:accelerator |_TRSMCmd - {1 rfw:ChassisSubsytem .
c3 or spline .FrontWheel L
trsm:Transmission ®
3 Al
I_TRSMData 0 g
|_EPCCmd| [_IEPCData o torquein:Torque E
rightHalfShaft
0 |_TRSMData »> =
epc  trsm 1T 2
ecu:PowerControlUnit . gl:-Terque 3
) torqueOut:Torque s
ice
[ |_TRSMCmd Ly dif:Differential
ice:InternalCombustionEngine
I_ICECmds| |_ICEData |_ICEData
c1 \,Q ctrl 4
S R A fi:Fuelinjector leftHalfShaft
bp:BrakeSubsystem UCE?’@ .
.BrakePedal ConneCtor . fdist
Client server port i W
Port:ICEFuelFitting ffw:ChassisSubsytem
ft:FuelTankAssy -rron ee

Port:FuelTankFitting
fp:FuelPump >
fuelSupply:Fuel fuelReturn:Fuel

fuelDelivery




Parametrics

Used to express constraints (equations) between value propert
* Provides support to engineering analysis (e.g. performance, reliabil
* Reusable (e.g. F=m*a is reused in many contexts)
* Non-causal (i.e. declarative statement of the invariant without specifyi

dependent/independent variables)

Constraint block defined as a simple extension of block
* Packages UML constraint so they are reusable and parameterized
* Constraint and constraint parameters are specified
* Expression language can be formal (e.g. MathML, OCL ...) or informal
* Computational engine is defined by applicable analysis tool and not by SysML

Parametric diagram represents the usage of the constraints in an analysis
context

* Binding of constraint usage to value properties of blocks (e.g. vehicle mass bound
toF=m * a)
e (Can use nested notation or dot notation

MOE’s and objective functions integrated with Parametrics to support trade
studies and engineering analysis



bdd [package] HSUVAnalysis [Definition of Dynamics]/
«constraint»
StraightLine
VehicleDynamics
parameters
whipowr:Real
Cd:Real
Cf:Real
tw:Real
acc:Real
vel:Real
incline:Real
Defini
Vehicle
Dynamics
y «constraint» «constraint» «constraint» «constraint»
PowerEquation PositionEquation VelocityEquation AccelerationEquation
Constraints Constraints Constraints Constraints
{tp(hp) = whipowr - (Cd*v) {x(n+1)=x(n)+dx(dt)=x(n)+v*dt} {v(n+1)=v(n)+dv = v(n) + a*dt} {a(g) = F/m = P*t/m = (550/
- (Cftw*v)}} {x(n+1)=x(n)+v*5280/3600*dt} {v(n+1 =v(n)+a*32*3600/5280*dt} 32)*tp(hp)*delta-t*twi}
parameters parameters parameters . parameters
. . . tw:Real
whipowr:Real dt:Real dt:Real dt:Real
Cd:Real v:Real v:Real ¢ :Real
Cf:Real x:Real a:Real pR |
tw:Real aRea
tp:Real
v:Real
i:Real




Evaluating Vehicle Dynamics

par [constraintBlock] StraightLineVehicleDynamics

Cd
L L Lo

incline tp
PowerEquation

whlpwr Cf | tw tw

L]

Accelleration
Equation

[1 [1

dt

a

a

[

«value»
globalTime.delta-t

VelocityEquation
[1

vel

\'

\'

L]

PostionEquation

[

«value»
HSUV.position




par [constraintBlock] MeasuresOfEffectiveness [HSUV MOEs] )

Instance of
constraint block is
identical for each
alternative

f:
:EconomyEquation [|-——————- «moe»
HSUValt1.FuelEconomy

«objectiveFunction» CE:
. N «moe» . . . I «moe»
a: [ | HSUValt1.QuarterMileTime :MyObjectiveFunction HSUValt1.CostEffectiveness
valuating || et ‘ st
:MaxAcceleration
M .|: Analysis z:
easures O b amoe» SIS

HSUValt1.Zero60Time

Effectiveness

ve
. . ] «moe» | ]
[ :CapacityEquation % HSUValt1.CargoCapacity

uc:
. I «moe»
[ ‘UnitCostEquation % HSUValt1.UnitCost




Distiller Example

Dirty water
@ 20 deg C

Dirty water
@ 100 deg C

Energy to Pure
@ condense/ water

Heat Dirty water

y

~ | To 100 deg C

Heat to Dirty
water

Heat to Boll
water

»Condense
steam
Boil Dirty water 4 @
- Drain p
Residue
~.

Disposed
residue




«effbd»
act [activity] DistillWater [Simple Starting Point)

Note: these are
the same thing!

Distill

coldDirty:H20
[liquid]

hotDirty:H20
[liquid]

steam:H20
[gas]

recovered:Heat

pure:H20
[liquid]

Water

a3:CondenseSteam

ACTIVIty
Diagram
(Initial)

al:HeatWater — a2:BoilWater

a4:DrainResidue

recovered:Heat external:Heat hiPress:Residue loPress:Residue




Distill Water
AcCtivity
Diagram
(Continuous
Flow
Modeling)

act [activity] DistillWater [Parallell Continuous Activities) Y

«continuous»
coldDirty:H20
[liquid]

«continuous»
recovered:Heat

«continuous»
hotDirty:H20
[liquid]

external:Heat

«continuous»
steam:H20

[gas]

hiPress:Residue

a4:DrainResidue

«continuous»
pure:H20
[liquid]




Intferactions

e Sequence diagrams provide representatio
message based behavior

* Represents flow of control

* Less effective than activities for representing inputs from
sources

 UML 2 sequence diagrams significantly more scalable
providing reference sequences, control logic, and lifelin
decomposition

* Timing diagrams provide representations for typical
system timelines and value properties vs time

* No change to UML

* Minor clarification on continuous time representations




Black Box Sequence

(StartVehicle)

sd StartVehicIeBIackBox)

driver:Driver

H turnignitionToStart

1: StartVehicle()

hybridSUV:HybridSUV
ref StartVehicleWhiteBox

-

\

\

References Lifeline Decomp
For White Box Interaction



White Box Sequence

(StartVehicle)

sd StartVehicleWhiteBox

ecu:PowerControlUnit epc:ElectricalPowerController

1: StartVehicle }

1.1: Enable




Requirements

* Requirements represents a text based requirement
* Minimal properties specified for id and text
based on user feedback
e Stereotype mechanism used to categorize
requirements (e.g. functional, physical)

* Able to specify constraints on what design
elements can satisfy the requirement (refer
to Appendix C.2)

» Stereotype of class (abstract) without instances
* Requirements containment used to specify
requirements hierarchy as a collection of
requirements (e.g., a specification)

e SST uses cross hairs notation vs black
diamond composition to be consistent with
containment semantics

* Requirements relationships based on subclasses of
dependency
* Derive, Satisfy, Verify, Refine, ..




Dependencies

* Used to specify relationships among
requirements (other uses as well)
 Different concept for SE’s with arrow
direction reversed from typical
requirements flow-down
» Refer to next slide
* Represents a relationship between client and
supplier elements
e Client depends on supplier
* A change in supplier results in a change
in client
* Application to requirements: A change
in requirement (supplier) results in a
change in design element that satisfies
it (client) or requirement derived from
it (client)




Example of
Derive/Satisty
Requirement

Dependencies

«requirement»
OffRoadCapability

«requirement»
Accelleration

«requirement»

CargoCapacity
% iy =
Supplier "~ \ /
AN \ //
N \ /
h AN \ //
«deriveReqt» «deriveReqt» «deriveReqt»
AN | Ve
S \\ //
b ~ \ //
- h N ! 7
Client >« \ .
«requirement»
Power
. \
Supplier "~
«satisfy»
“\_ Client
«block»

PowerSubsystem




Requirements Breakdown

req [package] HSUVRequirements [HSUV Specificationy

HSUVSpecification

S

e P o P

—

«requirement» «requirement» «requirement» «requirement» “reg:";:gi‘te“t»
Eco-Friendliness Performance Ergonomics Qualification y
ea? & < ef &) P9

—

«requirement» «requirement» «requirement» «requirement» «requirement» «requirement» «requirement»
Braking FuelEconomy OffRoadCapability Accelleration SafetyTest CargoCapacity PassengerCapacity

«requirement»

e «requirement»
Emissions

FuelCapacity

Id =R1.2.1
text = The vehicle shall meet Ultra-Low
Emissions Vehicle standards.




Requirements Derivation

req [package] HSUVRequirements [Requirement Derivationﬂ

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
FuelCapacity

/N /
| /
! /

«deriveReqt» «deriveReqt»

|
|
I
L

/
/
/

«requirement»
RegenerativeBraking

«requirement»
OffRoadCapability

«requirement»

«requirement»
Accelleration

CargoCapacity
N ) N 3 N =
\ \ \ ~ | B
\ \ \ N N \ .
| . N - N \ v
AN «deriveReq «deriveReqt» Y : o
\ \ \ ~ \ e
\ N \ «deriveReqt»  «deriveReqt»  «deriveReqt»
\ N N ‘\ P 7
' A \ s
\ . N \ ,
\ «requirement» N \ 7
i ~
«deriveReqt» Range . \ p
\\
\

RefinedBy
HSUVStructure::HSUV.
HSUVOperationalStates

«requirement»
PowerSourceManagement

«deriveReqt»

«requirement»
Power

«rationale»

Power delivery must happen by coordinated
control of gas and electric motors.

reference= “Hybrid Design Guidance”




req [package] HSUVRequirements [Acceleration Requirement Refinement and Verificationu

«requirement»
Acceleration

pra - /4 \ AN
- _ - / N
«refineReqt» _ - / AN
P / N
7 ! «verify»
P «deriveReqt» S
- /
— / \\
HSUVUseCases: ,/ AN

/

:Accelerate ,

«testCase»
Max Acceleration

«requirement»
Power

7
/
/

«satisfy»

/7
7/

«block»
PowerSubsystem

Reqgts Refinement/Verification



table [requirement] Capacity [Decomposition of Capacity Requiremeny
id |name text
The Hybrid SUV shall carry 5 adult passengers, along with
4|Capacity sufficient luggage and fuel for a typical weekend campout.
The Hybrid SUV shall carry sufficient luggage for 5 people
4.1|CargoCapacity for a typical weekend campout.
The Hybrid SUV shall carry sufficient fuel for a typical
4.2|FuelCapacity weekend campout.
4.3|PassengerCapacity |The Hybrid SUV shall carry 5 adult passengers.

table [requirement] Performance [Decomposition of Performance Requirement])

id [name text
The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better

2|Performance fuel economy.
The Hybrid SUV shall have the braking capability of a typical
2.1|Braking SUV.
The Hybrid SUV shall have dramatically better fuel economy
2.2|FuelEconomy than a typical SUV.

The Hybrid SUV shall have the off-road capability of a
2.3|OffRoadCapability |typical SUV.
The Hybrid SUV shall have the acceleration of a typical

2.4|Acceleration SUV.
table [requirement] Performance [Tree of Performance Requirements]/
id |name relation id |name relation id name
2.1 [Braking deriveReqt |d.1 |RegenerativeBraking
2.2 [FuelEconomy deriveReqt |d.1 |RegenerativeBraking
deriveReqt [d.2 |Range
4.2 |FuelCapacity deriveReqt [d.2 |Range
2.3 |OffRoadCapability deriveReqt |d.4 |Power deriveReqt |d.2 |PowerSourceManagement
2.4 |Acceleration deriveReqt |d.4 |Power deriveReqt |d.2 |PowerSourceManagement
4.1 |CargoCapacity deriveReqt [d.4 |Power deriveReqt |d.2 |PowerSourceManagement

Requirements Tables & Trees



Power Subsystem Breakdown

bdd [block] HSUV [PowerSubsystem Breakdowny

«block»
«block» WheelHubAssembly
PowerSubsystem
Ifw| rfw
«block»
«block» block «block» «block»
BrakePedal Ba(;teryP;)ck PowerControlUnit ElectricalPowerController FrontWheel

v v v v

«block» «block» «block» Ele(::':rlﬂ:?\:l(ztor «block»
accelerator FuelTankAssembly InternalCombustionEngine Generator Differential

4 —\l/

«block»
«block» «block» Transmission
FuelPump Fuellnjector




Power

Subsystem IBD

ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generatoy

bp:BatteryPack epc:ElectricalPower

emg:ElectricMotor

Controller Generator
—ctrl i2:Electric i1:Electric
Current Current
|_IEPCData |(I_IEPCCmd
acl:accelerator |_TRSMCmd rfw:ChassisSubsytem
c3 ctr spline .FrontWheel t
trsm:Transmission ®
3 ]
|_TRSMData 3 A S
|_EPCCmd| |_IEPCData 2 torquein:Torque :
rightHalfShaft
I_TRSMData » 2
epc — v 5!
. . g1:Torque a
ecu:PowerControlUnit torqueOut:Torque ?n
ice
|_TRSMCmd {it dif:Differential
ice:InternalCombustionEngine
|_ICECmds| |_ICEData |_ICEData
c1 ctrl 4
—J. O/L] fi:Fuellnjector \eftHalfShaft
bp:BrakeSubsystem I_ICECmds .
.BrakePedal fdist
{h o
- - . - Ifw:ChassisSubsytem
Port:ICEFuelFitting —1
ft:FuelTankAssy ‘FrontWheel

Port:FuelTankFitting
fp:FuelPump  —&&

fuelDelivery

<
<

fuelSupply:Fuel

fuelReturn:Fuel
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