Systems
Engineering
for DoD

Testing

BASICS

* Management Involvement

* Corporate Culture

* Objectives

* |ntegrity

* A‘commitment to competence’

\® * Good testing does not just happen, it must be planned, and
a testing policy should be the cornerstone of that plan.

* The structure that is put in place to develop and update
policies, standards, and procedures must involve both staff
and management.

What the CSTE calls ‘incentives and temptations’

Pressure to meet performance targets (realistic or
unrealistic)

Negative
Impact
Issues

Nonexistent or ineffective controls

Over decentralization

Weak or ineffective audit policies

Ineffective deterrents

MIL-STD-810 & MIL-STD-2105D

MIL-STD-810 = “Will
my equipment survive
the environment it’s

used in?”

MIL-STD-2105D =
“Will my munition
stay safe if something

goes wrong?”

/

e MIL-STD-810is a U.S. military standard that establishes a
series of laboratory and field test methods to evaluate how
equipment performs under various environmental
conditions. It is widely used not only by the Department of
Defense but also in commercial industries (such as

Ml L_STD_8 -l O aerospace, automotive, and electronics) to ensure

ruggedness and durability. The original standard was issued
in 1962, and it has been updated several times (current

version is MIL-STD-810H, released in 2019).

MIL-STD-810 includes procedures for a wide range of environmental stresses, such as:

Temperature extremes (high, low, rapid changes)

Humidity

Shock and vibration

Sand and dust exposure

\ENYIDE

Salt fog / corrosion resistance

310

Rain and water immersion

Altitude and pressure changes

Solar radiation (UV exposure)

Fungus resistance

Each test method specifies how to replicate these environments in controlled conditions

\ENYIDE

310

Test Category

What It Simulates

High Temperature

Operation and storage in hot climates (deserts, enclosed vehicles in sun).

Low Temperature Operation and storage in cold climates (arctic, high-altitude).

Temperature Shock Sudden temperature transitions (e.g., moving from hot outdoor air to a cold aircraft).
Humidity Exposure to warm, moist environments that may cause condensation or mold.

Rain / Drip Heavy rainfall, dripping water, blowing rain conditions.

Immersion Submersion in water (short-term or accidental).

Sand & Dust Wind-blown particles in deserts or dusty environments.

Salt Fog (Corrosion)

Salt-laden air that causes corrosion (common in coastal/marine environments).

Solar Radiation (UV)

Long-term sun exposure leading to heat buildup or UV degradation.

Altitude / Pressure

High-altitude, low-pressure environments (aircraft operations, mountain regions).

Explosive Atmosphere

Operation in fuel-vapor-rich environments (testing ignition safety).

Shock

Impacts, drops, and sudden physical stresses.

Vibration

Continuous vibration from vehicles, aircraft, or machinery.

Gunfire Vibration

Shock and vibration specific to weapon-mounted equipment.

Fungus

Warm, damp conditions promoting fungal growth.

Icing / Freezing Rain

Exposure to freezing precipitation that forms ice on surfaces.

Acoustic Noise

Exposure to high noise/vibration from jet engines, machinery, or artillery.

Toxic Fluids

Exposure to fuels, oils, hydraulic fluids, cleaning agents, etc.

Ballistic Shock

High-intensity shock loads (e.g., from nearby explosions).

MIL-STD-

2105D Hazara
Assessment
Tests for Non-
Nuclear
Munitions

Test

Fast Cook-off Test

Slow Cook-off Test

Bullet Impact Test

Fragment Impact Test

Sympathetic Detonation

Shaped Charge Jet Impact

Shock Tests

Purpose

Evaluates response when exposed to
sudden, intense fire (e.g., fuel fire).

Measures how munitions react to gradual
heating over time.

Determines reaction to small arms fire.

Assesses response to high-velocity
fragments (e.g., nearby explosion).

Evaluates whether one munition
detonates when a nearby one explodes.

Tests vulnerability to armor-piercing
shaped charges.

Simulates impact or drops during
handling/transport.

MIL-STD-2105D
Hazard
Assessment
Tests for Non-
Nuclear

Munitions

 Munitions tested under MIL-STD-2105D are classified based
on reaction severity:

* Type | — Detonation: Violent, catastrophic explosion.

* Type Il — Deflagration: Rapid burning/explosion, less violent
than detonation.

* Type lll — Explosion: Localized but significant blast.

* Type IV —Burning: Sustained combustion without
detonation.

* Type V —No Reaction: No hazardous response observe

MIL-STD-2105D Hazard Assessment

Tests for Non-Nuclear Munitions

Aspect

MIL-STD-810

MIL-STD-2105D

Full Title

Environmental Engineering Considerations and Laboratory Tests

Hazard Assessment Tests for Non-Nuclear Munitions

Primary Purpose

Evaluate environmental durability of equipment and materials.

Assess safety hazards of munitions under accidental conditions.

General equipment: vehicles, electronics, aerospace, consumer

Ordnance only: bombs, rockets, missiles, warheads, propellants,

Scope .
gear. explosives.
Focus How items perform in real-world environments (heat, vibration, How munitions react to unintended stimuli (fire, impact, shock,
dust, etc.). etc.).
. - . . - Fast k-off- Sl k-off- Bullet i t- F ti t-
Key Tests - Altgyllony temiperinl o= Munrielit- Shoel S vilaraion- Sanelelst: S r?ws a(n:t(iwoetiSdetoiV;/ticc?r?— Sf\a eélJ cialrm:?ect imrai?—esnh;r:k??nc] act
¥ Salt fog- Rain/immersion- Solar radiation- Fungus- Altitude t(Zstsp P g¢J P P
L . Classifies munitions’ reaction severity (Detonation, Deflagration,
Outcome Demonstrates ruggedness and survivability for operational use.
Burn, etc.).
Fralfessn Military & commercial (aerospace, automotive, electronics, rugged | Defense industry (DoD, NATO, contractors for explosives and
PP devices). ordnance systems).
First Issued 1962 (current: MIL-STD-810H, 2019). 1980s (current: MIL-STD-2105D).
: . : . . Standardized safety assessment—tests required for Insensitive
Alignment Tailored testing—select methods based on mission environment. L - / : au Y
Munitions (IM) compliance.
End Goal Ensure equipment functions reliably under expected environmental | Ensure munitions are safe to store, transport, and handle, reducing

conditions.

accidental hazards.

= 2

DESIGN &
DEVELOPMENT FIELD USE &
MIL-STD-810 OPERATION

ENVIRONMENTAL
TESTING
* High/Low Temperature
* Shock and Vibration Q
STD 2" 05D * Sand and Dust
- TESTING & * Rain and mmermsn SAFETY

EVALUATION ASSURANCE

| S——Y MIL-STD-2105D
MUNITIONS TESTING
¢ Fast Cook-off
¢ Slow Cook-off

¢ Bullet Impact
L- Fragment Impact

MIL-STD-
810 & MIL-

7
.

* MIL-STD-810 — Environmental Engineering Considerations and Laboratory
Tests

* MIL-STD-202 — Electronic and Electrical Component Parts (environmental

S O m e test methods)
* MIL-STD-883 — Microcircuits environmental test methods and procedures

M i ”TO ry * MIL-STD-167 — Mechanical Vibrations of Shipboard Equipment

e MIL-STD-740 — Airborne Sound Measurement
TeS'I'i n g e MIL-STD-2105D — Hazard Assessment Tests for Non-Nuclear Munitions
* MIL-STD-1576 — Electroexplosive Subsystem Safety Requirements
S TO n d O rd S e MIL-STD-464 — Electromagnetic Environmental Effects (E3) Requirements
* MIL-STD-1316 — Safety Criteria for Fuzes
* MIL-STD-1901A — Safety Assessment for Non-Nuclear Munitions
* Focused on materials strength, shock, and survivability.
* MIL-STD-810 (shock/vibration portions)
* MIL-S-901D — Shock Tests, High-Impact Shipboard Machinery, Equipment
* MIL-STD-167-1A — Mechanical Vibrations of Shipboard Equipment
e MIL-STD-740-1/2 — Airborne and Structure-Borne Noise Measurements

Nelnls
Military

Testing
Standards

MIL-STD-461 — Electromagnetic Interference (EMI) Control

MIL-STD-464 — Electromagnetic Environmental Effects (E3)

MIL-STD-704 — Aircraft Electric Power Characteristics

MIL-STD-1399 — Shipboard Power Interface Standards

MIL-STD-1472 — Human Engineering (ergonomics, displays, controls)

MIL-STD-882 — System Safety Program Requirements

MIL-S-901D — Shock Tests for Shipboard Equipment (Heavy)

MIL-STD-167-1A — Shipboard Vibration

MIL-STD-2036 — General Requirements for Electronic Equipment (shipboard)

MIL-STD-1553 — Digital Time Division Command/Response Multiplex Data Bus

MIL-STD-1760 — Aircraft Stores Electrical Interconnection System

MIL-STD-1530 — Aircraft Structural Integrity Program

Consensus Process
Standards & Models

https://sebokwiki.org/wiki/Application_of Systems

1 i
Potential Standards Influence of [Consensis
1
: . . ;
Organization/Project Processes | Vocabulary
: (e.g., ISO/IEC/IEEE
I 24765)
System Life Cycle Processes \ |
(1ISO/IEC/IEEE 15288) - —— - 1 1 SE Guides
I I I
Software Life Cycle Processes ' ! ! e
, Industry Stds : | ISO/IEC/IEEE 24748)
(ISO/lEC/IEEE 12207) ! I ’ | Al'tifact Guidance
Architecture Process : : ‘Organization | (e.g. ISO/IEC/IEEE
(ISO/IEC/IEEE 42020) : Gov’t Stds : . Policies : 15289 or 42010)
Requirements Engrg . . = A | = e
(ISO/IEC/IEEE 29148) i Domain Specific : -—— -l— SR _l_ --
n r L onaaras i] ! |
Measurement : I
(ISO/IEC/IEEE 15939) : — Dreanization |
' l
Risk Management 1 Standard I
fo r S E (ISO/IEC/IEEE 16085) > Prpcess : Processes :
Requirements : "
Process Assessment | 1
(1SO/IEC 33000 series) I l :
1
Reviews & Audits s i N 3 ! :
(ISO/IEC 24748-8; IEEE 15288.2) | | : l l |
| I |
Quality Management ! Industry Stds I :) I
(150 9000 Series) : : I Project :
Integrated Project Processes : G t Std : : Defined !
1 ? 1 |
(SAE 1001) | OV S : : Processes :
| |
5 i Project Specific § |
. 2 Standards \ ! __ Business Units !

ISO-IEC-IEEE
29919-2

Software and
systems
engineering —
Software testing-

Test Processes

The goal of each layer is as follows:

Organizational test process

Defining a process for the creation and maintenance of organizational test specifications, such as
organizational test policies, practices, processes, procedures and other assets.

Test management processes

Defining processes that cover the management of testing for a whole project or any test level
(e.g. system testing) or test type (e.g. performance testing) within a project (e.g. project test

management, system test management, performance test management).

The test management processes are:

test strategy and planning process ;
test monitoring and control process ;

test completion process

Dynamic test processes

Defining generic processes for performing dynamic testing. Dynamic testing may be performed at a
particular test level (e.g. unit, integration, system, and acceptance) or for a particular test type (e.g.
performance testing, security testing, and functional testing) within a project.

The dynamic test processes are:

* test design and implementation process ii) test environment and data management
process

° test execution process and

e testincident reporting process.

Organizational
test process

ISO-IEC-IEEE
299] 9—2 4 Test management proceses \

Software and Test Test Test
strategy and monitoring combpletio
SYS‘I'emS planning and control r-:F::E;s n
. . process process P
engineering — 9)
Software testing-
Tes-l- Processes 4 Dynamic test processes
Test Test
Test design and environment Test incident
implementation and data execution thct r_f,n
process management process rErp:celsr;g
process P

Figure 2 — The multi-layer model showing all test processes

ISO-IEC-IEEE 29919-2

Software and systems engineering —Software testing- Test Processes

Organizational test process
(applied to test policy)

Organizational] Feedback on
test policy 1 organizational

i test policy

| 4

Feedback on
organizational
test policy

Organizational Organizational test process
est policy . .
(applied to test practices)

Drganizatiunai * Feedback on

test practices I organizational
test practices

A 4

1
Test management processes J

(applied to project test management)

Ficure 3 — Example organizational test process implementation

ISO-IEC-IEEE
29919-2
Software and

systems
engineering —
Software testing-
Test Processes

!

Develop
organizational
test
specification
(OT1)

Organizational
test
specification

Monitor and
control use of
organizational
|SO-1EC-IEEE 29919

specitication

(OT2)

Controlled

organizational
test
specification

-
=

Software ...

T

Update
organizational
test
specification
(OT3)

Updated

organizational test

specification

Figure 4 — Organizational test process

Organizational
test process

A Feedback on
Test policy and test policy and
erganizational test practices

organizational test practices

Test management processes
‘ Test plan updates

Test
ISO-IEC-IEEE Test strategy | Test plan Test r:::.!is completion
. Test
29919-2 and =] monitoring and fem—p com:lsetiun "E—Pﬁ"f’@
S ﬂ' d planning control

onware an

SYSfe ms LSRN, :::: spt!:::;s reports, Test plan, Test

* . di] test completion report, _control T
en g iIneerin g — Ineciives test measures directives
S$ﬂ.w1_qpre ies“ng i Test management Dynam'il: test
est rrocesses processes processes

Test plan,
contral r.l::;sures
directives

Dynamic test
processes

Figure 5 — Example test management process relationships

NAIEI
Integrity

Levels

* Anintegrity level (or integrity level claim) is a declared
statement about a system’s behavior or properties (e.g.,
reliability, safety, security), specifying its acceptable limits and
the allowable level of uncertainty.

« Safety: In functional safety (e.g., I[EC 61508), systems use
Safety Integrity Levels (SILs) ranging from SIL 1 to SIL 4, where
SIL 4 indicates the highest reliability (lowest probability of
dangerous failure)

e Automotive: ISO 26262 uses Automotive Safety Integrity
Levels (ASILs)—from ASIL A (lowest) to ASIL D (highest)—to
quantify required risk reduction for hazards

Software
Integrity

Levels

Criticality Description Level
High Selected function affects critical performance of the system. 4
Major Selected function affects important system performance. 3
Moderate Selected function affects system perfcilmance. but workaround strategies can be imple- 5

mented to compensate for loss of performance.
Low Selected function has noticeable effect on system performance but only creates incon- 1

venience to the user if the function does not perform in accordance with requirements.

Levels/Types of
Testing

Testing for software/systems

*\Verification Testing
* testing of development interim deliverables

*Unit Testing
*|ntegration Testing

*System Testing
*simulate operation of the entire system

*User Acceptance Testing

el - | "’}
Software

- Product
Defects

* Software Design Defects
e Designing software with
incomplete or erroneous

decision-making criteria

* Failing to program as designed
* Failure to validate data

e Data Defects

* Incomplete data used by
automated decision-making
applications.

ﬂ A 71 “m ll\\

Illm / » ji TTY\W\v
Py S

g /] B %\ W

Reasons for Software
Defects

* IT improperly interprets requirements

* Users specify the wrong requirements
* Requirements are incorrectly recorded
* Design specifications are incorrect

e Errorsin program coding

* Data entry errors

* Testing errors

e Tests falsely detect an error

 The corrected condition causes another defect

Test Planning

Identify the system
development phases.

Select and rank test
objectives.

Identify the operational
risks associated with the
system under
development.

Place risks in the matrix.

Testing Constraints

e Limited schedule and budget

e Lacking or poorly written requirements

e Changes in technology

e Limited tester skills

Source of most problems
IN festing

Poor objectives

-

Wrong Techniques

Incomplete Testing

27

Examples

Requirements Reviews — Done by developers and users
Design Reviews - Developers
Code Walkthroughs — Developers

Code Inspections - Developers

Unit Testing — Developers
Integrated Testing — Developers with assist from independent test team
System Testing — Independent Test Team

User Acceptance Testing- users with assist from independent test team

Functional vs Structural

Functional testing is sometimes called black-box
testing because no knowledge of the internal logic
of the system is used to develop test cases.

Structural testing is sometimes called white-box

testing because knowledge of the internal logic of
the system is used to develop hypothetical test
cases.

Functional Testing
4 Requirements

Requirements - System performs as specified.

Regression — Verifies anything unchanged still performs
correctly.

Error Handling — Errors prevented or detected.

Manual Support — Support process works.

Inter-system — Data is correctly passed from system to system.
Control Controls reduce system risk to acceptable level.

Parallel - Old system and new system are run and the results
compared

Structural Testing

® 4

Stress Recovery Operations Compliance

5.

Security

SRS
il

General Testing Guidelines

1S S Q8
il

v & Iad

Verify Data Entry Validate Logical Validate Output Test normal Test outlier/extreme
Operations conditions conditions

Regression testing

* Regression testing on the other hand is the act of
repeating other tests in 'parallel' areas to ensure
that the applied fix or a change of code has not
introduced other errors or unexpected behavior.

Classes of Test Tools

I m|||m{n||||m||||||||||||||||
w@B&: ¢ o 1

* Defect Management Tools

* Performance/Load Testing Tools
* Manual Tools

* Traceability Tools

e Code Coverage

e Test Case Management Tools

Basics

e Test Planning — assesses the systems risks, and then develops a
plan to determine if the software minimizes those risks.

e Budgeting — the resources to accomplish the test objectives.

* Scheduling — dividing the test project into accountable pieces
and establishing start and completion dates.

 Staffing — obtain the testers to achieve the plan.

e Customization of the test process — determining whether or
not the standard test process is adequate for a specific test
project, and if not, customizing the test process for the
project.

SMART Godals

@ Specific
f Measureable
% Agreed Upon
©) Realistic

Time Frame

Cost Estimation
Models

* Cost Models: Direct estimates of effort. They typically have a
primary cost factor such as lines of code (LOC) and a number of
secondary adjustment factors.

* Constraint Models: These models demonstrate the relationship
over time between two or more parameters of effort, duration, or
resource.

* Function Points Model: Function points (FP) measure the size in
terms of the amount of functionality in a system. Function points
are computed first by calculating an unadjusted function point
count (UFC) for different categories.

* COCOMOII Model: an enhancement over the original COCOMO
(Constructive Cost Model). The original COCOMO model is based
on inputs relating to the size of the system and a number of cost
drivers that affect productivity. COCOMOII is useful for a wider
collection of techniques and technologies.

Test Team Approaches

s2= 1. Developers become the Test Team Approach
e» 2.Independent IT Test Team Approach
3. Non-IT Test Team Approach

MM 4. Combination Test Team Approach

Test Planning Vocabulary

Test Case: Test cases are how the testers validate that a system function meets the
specifications (i.e., expected results).

Test Data: Test data is information used to build a test case.

Test Scripts: Test scripts are an online entry of test cases.

Risk: Risk is the potential loss to an organization.

Risk Analysis: Risk analysis is an analysis of an organization’s information resources, its existing
controls, and its remaining organization and computer system vulnerabilities. It combines the
loss potential for each resource or combination.

Test Planning Vocabulary

Threat: A threat is something capable of exploiting
vulnerability.

Vulnerability: Vulnerability is a design, implementation,
or operations flaw that may be exploited by a threat.

Control: Control is anything that tends to cause the
reduction of risk.

Types of
Test
Cases

Functional

Structural

Erroneous

Stress

Scripts

Use Cases

Test Case Objective

Test Condition

* Operator Action
* Input Specifications

Output Specifications

Pass or Fail

Comments

L
1208111111/, 60
135 00 7, 4

1508
1655
180=
152 \

//

307,

7, N
45 77, P 13
60 &/11T\Vzg
75 gq 105

Process for bu
cases

* |dentify test resources.

* |[dentify conditions to be tested.

* Rank test conditions.

 Select conditions for testing.

* Determine correct results of processing.
* Create test cases.

* Document test conditions.

* Conduct test.

* Verify and correct.

Test Coverage

Based upon the risk, and criticality
associated with the application under test,
the project team should establish a
coverage goal during test planning. The
coverage goal defines the amount of code
that must be executed by the tests for the
application.

NNE
Associated
with Software
Development

e o |mproper use of
technology

e e Repetition of errors
e o Cascading of errors
* o ||logical processing

* ¢ |nability to translate user
needs into technical
requirements

e e |nability to control
technology

e e |ncorrect entry of data

e o Concentration of data

* Inability to react quickly

* ¢ |nability to substantiate
processing

» e Concentration of responsibilities
* e Erroneous or falsified input data
* o Misuse by authorized end users

* e Uncontrolled system access

» e |neffective security and privacy
practices for the application

* e Procedural errors during
operations

* e Program errors
* o QOperating system flaws

* e Communications system failure

NNE
Associated
with Systems
Testing

Not Enough Training/Lack of Test Competency.

Us versus Them Mentality

Lack of Test Tools

Lack of Management Understanding and Support of Testing
Lack of Customer and User Involvement

Not Enough Schedule or Budget for Testing

Over Reliance on Independent Testers

Rapid Change
Testers are in a Lose-Lose Situation
Having to Say “No”

Test Environment

New technology

New developmental processes

Risk Analysis Process

https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3145376
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3145376

Black-box

testing

An approach to testing where the
program is considered as a ‘black-
box’

The program test cases are based
on the system specification

Test planning can begin early in
the software process

Boundary
value testing

Partition system inputs and outputs
Into
‘equivalence sets’

e |f input is a 5-digit integer between 10,000 and
99,999, equivalence partitions are < 10,000,
10,000 - 99, 999 and > 10, 000

Choose test cases at the boundary of
these
sets

* 00000, 09999, 10000, 99999, 10001

e Functional analysis seeks to verify, without
execution, that the code faithfully
implements the specification.

* Input Testing, Syntax Checking, Equivalence
Partitioning

» Special-Value Testing: Selecting test data on the
basis of features of the function to be computed
is called

/
7

* In structural analysis, programs are analyzed without being
executed. The techniques resemble those used in compiler

STI’U CTU I’CI| construction.
Tes-l-l ng * Complexity Measures

e Data Flow Analysis
* Symbolic Execution

Structural Testing

e Statement Testing: Statement testing requires that every statement in the program be
executed.

* Branch Testing: Branch testing seeks to ensure that every branch has been executed.

e Conditional Testing: In conditional testing, each clause in every condition is forced to take
on each of its possible values in combination with those of other clauses.

* Expression Testing: Expression testing requires that every expression assume a variety of
values during a test in such a way that no expression can be replaced by a simpler
expression and still pass the test.

e Path Testing: In path testing, data is selected to ensure that all paths of the program have
been executed.

Scripfts

Unit Scripting — Develop a script to test a specific unit or module.

Pseudo-concurrency Scripting — Develop scripts to test when there are
two or more

users accessing the same file at the same time.

Integration Scripting — Determine that various modules can be properly
linked.

Regression Scripting — Determine that the unchanged portions of systems
remain unchanged when the system is changed. Stress and Performance
Scripting — Determine whether the system will perform

correctly when it is stressed to its capacity. This

ltems for Scripts

Test Item — a unique item identified of the test
condition.

e Entered by — Who will enter the script.

e Sequence — The sequence in which the actions
are to be entered.

e Action — The action or scripted item to be
entered.

e Expected Result — The result expected from
entering the action.

 Operator Instructions — What the operator is to
do if the proper result is received, or If an
improper result is returned.

Scripts

Test Level Tl'aS [:]slag ::iﬂll Trl;fll;latl:il:ns Tf ll'zlgjfal TI:?-:::;E;;
Unit X X

Concurrent X X
Integration X X

Regression X X
Stress X X

White-box
testing

« Sometime called structural
testing or glass-box testing

« Derivation of test cases
according to program
structure

« Knowledge of the program is
used to identify additional test
cases

« Objective is to exercise all
program statements (not all
path combinations)

e Statement coverage -
» Test cases which will execute every statement at

least once.
* Tools exist for help
Types Of * No guarantee that all branches are properly
tested. Loop exit?
STrUCTU rC” * Branch coverage
Tes-hng * All branches are tested once

* Path coverage - Restriction of type of paths:
* Linear code sequences

» Definition/Use checking (all definition/use paths)
* Can locate dead code /

> 4

e Techniques that focus on assessing the presence or absence
of errors in the programming process are called error-
oriented. There are three broad categories of such
techniques: statistical assessment, error-based testing, and
fault-based testing. These are stated in order of increasing

Erro r] eO U S specificity of what is wrong with the program without

reference to the number of remaining faults.

T@STI N g * Error-based testing attempts to show the absence of certain
errors in the programming process. Fault-based testing
attempts to show the absence of certain faults in the code.
Since errors in the programming process are reflected as
faults in the code, both techniques demonstrate the
absence of faults.

Erroneous Testing

L

* Fault Estimation: Fault seeding is a statistical method used to assess the
number and characteristics of the faults remaining in a program. Harlan
Mills originally proposed this technique and called it error seeding.

* Input Testing: The goal of input testing is to discover input faults by . il
ensuring that test data limits the range of undetected faults. pessertiio

e Perturbation Testing: Perturbation testing attempts to decide what
constitutes a sufficient set of paths to test. Faults are modeled as a vector
space, and characterization theorems describe when sufficient paths have
been tested to discover both computation and input errors.

* Fault-Based Testing: Fault-based testing aims at demonstrating that certain
prescribed faults are not in the code. It functions well in the role of test
data evaluation. Test data that does not succeed in discovering the
prescribed faults is not considered adequate.

“

f\
.' ‘e
B .4

_.."‘
N

”

1

Erroneous Testing

e Local Extent, Finite Breadth: Input-output pairs of data are encoded as a

comment in a procedure, as a partial specification of the function to be
computed by that procedure. The procedure is then executed for each of
the input values and checked for the output values.

Global Extent, Finite Breadth: In mutation testing, test data adequacy is
judged by demonstrating that interjected faults are caught. A program
with interjected faults is called a mutant, and is produced by applying a
mutation operator. Such an operator changes a single expression in the
program to another expression, selected from a finite class of expressions.

Local Extent, Infinite Breadth: Rules for recognizing error-sensitive data are
described for each primitive language construct. Satisfaction of a rule for a
given construct during testing means that all alternate forms of that
construct have been distinguished.

* Global Extent, Infinite Breadth: We can
define a fault-based method based on

ErrOneOUS symbolic execution that permits elimination
. of infinitely many faults through evidence of
TeSTlng global failures. Symbolic faults are inserted

into the code, which is then executed on real
or symbolic data..

/
7

Stress Testing

The types of internal limitations that can be evaluated with volume testing include:

* Internal accumulation of information, such as tables.

e Number of line items in an event, such as the number of items that can be included
within an order.

* Size of accumulation fields.

e Data-related limitations, such as leap year, decade change, switching calendar years,
etc.

e Field size limitations, such as number of characters allocated for people’s names.

* Number of accounting entities, such as number of locations, state/country in

which operations are performed, etc.

Audit Hook

= False
For_mod.use_z = Trye

#selection at the end -add The audit hook technique involves embedding code in

S ob.select= 1

Ser_ob.select-1 application systems for the examination of selected

ntext.scene.objects.actiw

M("Selected” + str(modiier il transactions. This helps an IS auditor to act before an
bpy - Context. selected_ob error or an irregularity gets out of hand. An

ISR embedded audit module involves embedding
specially-written software in the organization's host
application system so that application systems are
monitored on a selective basis. An integrated test
facility is used when it is not practical to use test data,
and snapshots are used when an audit trail is

required.

wrint("“please select exacthy ™

_ OPERATOR CLASSES -~

Automated Code
Comparison

An automated code comparison is the process of
comparing two versions of the same program to determine
whether the two correspond. It is an efficient technique
because it is an automated procedure. Test data runs
permit the auditor to verify the processing of preselected
transactions, but provide no evidence about unexercised
portions of a program. Code review is the process of
reading program source code listings to determine whether
the code contains potential errors or inefficient statements.
A code review can be used as a means of code comparison
but it is inefficient. The review of code migration
procedures would not detect program changes.

System testing metrics

» Defects rates
* Errors rates
* Number of errors
* Number of errors found per person hours expended
* Measured by:
* individual

* module
* during development

* Errors should be categorized by origin, type, cost

Critical - The defect(s) would stop the software system from
operating.

DefeCT Major - The defect(s) would cause incorrect output to be
produced.

Severity

Minor - The defect(s) would be a problem but would not cause

improper output to be produced, such as a system
documentation error.

Missing

Defect \/\/rQng

Classes

Extra

e Name — Requirement defect

e Severity — Minor

Defect

Nelagligle e Type - Procedural

e Class — Missing

e Data the defect uncovered
e Name of the defect
e | ocation of the defect

e Severity of the defect

Defect
Reporting

e Type of defect

e How the defect was uncovered (i.e., test data/test script)
e Where the defect originated

e \When it was corrected

e \When it was entered for retest

4 © L]

RELIABILITY VALIDITY EASE OF USE

GOOd AND SIMPLICITY

&

TIMELINESS CALIBRATION

MeTrics

e Metrics unique to test

e Complexity measurements

e Project metrics

Test Metric ¢ Size measurements
Categories e Defect metrics
e Product measures

e Satisfaction metrics

e Productivity metrics

A Pareto chart is a special type of
bar chart to view the causes of a
problem in order of

severity: largest to smallest. The

gelcife Pareto chart provides an effective
Chart tool to graphically show

where significant problems and
causes are in a process.

Pareto
Chart

168.0

151.2

134.4

117.6

100.8

24.0

=]

7.2

50.4

33.6

16.8

0.0

Pareto Chart of Late Arrivals by Reported Cause

Traffic Child care Public
transportation

Weather

Overslept

Emergency

100.0%

90.0%

80.0%

70.0%

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%

http://upload.wikimedia.org/wikipedia/commons/8/8a/Pareto.PNG

Cause
and
Effect

Diagram

uuuuuuuu

Failure Mode and Effects Analysis (FMEA) is a systematic,
structured method used to identify potential failuresin a
product, process, or system, evaluate their effects, and
prioritize actions to reduce the likelihood or consequences of
those failures.

It is one of the most widely used reliability and risk
management tools in systems engineering, manufacturing,
and quality assurance. The core concepts are:

* Failure Mode — The specific way in which a component or
process could fail (e.g., short circuit, leakage, fracture).
Effect — The consequence of the failure mode on the next
higher level of the system, or on the overall system.

* Cause — The underlying reason for the failure mode (e.g.,
material fatigue, human error, design flaw).

* Current Controls — The existing measures in place to
prevent or detect the failure.

 Recommended Actions — Additional steps to reduce
occurrence, improve detection, or mitigate the effect.

Failure Mode, Effects, and Criticality Analysis (FMECA) is a systematic,
bottom-up reliability and risk assessment method used in engineering to
identify potential failure modes of a system, evaluate their effects, and
prioritize them based on criticality—a combination of severity and
likelihood.
* Process Steps
* Define the scope and system breakdown
* Decompose the system into subsystems, assemblies, and
components.
* Identify failure modes
 List all the possible ways each component can fail (e.g., short circuit,
mechanical jam, corrosion).
* Determine the effects
* For each failure mode, describe the local effect (on the component),
next-higher-level effect (on the subsystem), and end effect (on the
whole system).
* Assess severity
* Rank how serious each effect is (e.g., from negligible to
catastrophic).
» Estimate occurrence probability
* Rank or quantify how likely each failure is to occur, based on data or
estimates.
 Evaluate detection (optional in some approaches)
* Assess how likely it is that the failure will be detected before it
causes harm.

Perform criticality analysis

 Calculate a Criticality Index (quantitative) or assign a
criticality category (qualitative).

* Often based on:

Cn=B8xaxA xt

e Where:

* [=conditional probability the failure will result in the
defined severity

* o = proportion of failures of that mode
* \ = part failure rate
* t=operating time

Failure
Modes,
Effects, and

Diagnostic
Analysis
(FMEDA)

Failure Modes, Effects, and Diagnostic Analysis (FMEDA) is
an extension of Failure Modes and Effects Analysis (FMEA)
that adds a quantitative diagnostic coverage assessment—
making it especially useful in functional safety and
reliability-critical systems. It’s widely used in industries like
automotive (ISO 26262), process safety (IEC 61508),
aerospace, and medical devices to help meet Safety
Integrity Level (SIL) or Automotive Safety Integrity Level
(ASIL) targets. FMEEDA goes beyond standard FMEA by:

e |dentifying failure modes and their effects (like FMEA).

e Quantifying how each failure mode is detected by built-
in diagnostics or monitoring.

e Calculating metrics such as diagnostic coverage (DC),
safe failure fraction (SFF), and failure rates.

* Providing input for probabilistic safety analysis and
hardware fault tolerance (HFT) assessments.

FMEDA vs FMEA

Aspect FMEA FMEDA

Qualitative analysis of potential failures and Quantitative analysis including diagnostic
Focus :

effects detection and coverage

. . . Failure modes, effects, detection rates, failure
Outputs Failure modes, effects, risk priority .
rates, safety metrics
. Lt . o Functional safety compliance & quantitative

Application Reliability improvement & risk prioritization Y P d

reliability targets

Beta-factor model

The Beta-factor model is a quantitative method used in Common Cause Analysis (CCA) to account for
dependent failures in redundant systems—specifically, common cause failures (CCFs) that affect multiple
components simultaneously.

e For two identical redundant components:

e A =total failure rate of a single component

e [=fraction of failures due to a common cause

* (1—-B)="fraction of failures that are truly independent
* Then:

* CCF failure rate=B-A\

* Independent failure rate=(1-)-A

* |na 2-out-of-2 system (both components must work), the total probability of system failure includes:
 Common cause failures (both fail together via the same cause)
* Independent sequential failures (one fails, then the other before repair

* Interpretation of B

Be'l'q _fq C-I-or * B=0 - all failures are independent (ideal redundancy)

 B=1 - allfailures are due to common causes (redundancy

model is useless)

* Typical real-world values: 0.01-0.3 depending on system
type and environment.

» Reliability, Availability, Maintainability, and Safety (RAMS) is
a collective term used in systems engineering to describe the
key dependability attributes of a system.

It’s widely applied in industries such as aerospace, defense,
rail, automotive, energy, and medical devices to ensure that
systems perform as intended throughout their lifecycle.

* Measured as a probability (O to 1) or Mean Time Between
Failures (MTBF).Focuses on failure prevention.Influenced by
design quality, component selection, manufacturing
processes, and operating environment.

Common Cause Analysis (CCA) is a systems engineering and reliability method used to
identify and manage situations where multiple components fail due to the same underlying
cause. The key idea is that some failures are not independent—if a single cause can trigger
several component failures at once, it can undermine redundancy and safety measures.
Purpose

* Detect potential single points of vulnerability that can defeat fault-tolerant designs.

* |dentify causes that can produce simultaneous or correlated failures in otherwise
independent elements.

e Ensure that redundancy actually improves reliability rather than giving a false sense of
security.

Common CCA Methods
e Qualitative:

* Cause—effect mapping: Brainstorming
and mapping shared failure triggers.

e Checklists: Based on known industry
CCF patterns.

* FMEA/FMECA extensions: Adding
“common cause” columns to
standard analyses.

* Quantitative:

e Beta-factor model: Assumes a
proportion (B) of total component
failures are due to common causes.

* Multiple Greek letter models: More
granular modeling of partial
dependencies.

Check
Sheet

A check sheet is a technigue or tool to record the
number of occurrences over a specified interval of
time; a data sample to determine the frequency of an
event. The recording of data, survey, or sample is to

support or validate objectively the significance of the
event.

Run Chart

A run chart is a graph of data
(observation) in chronological order
displaying shifts or trends

in the central tendency (average).

Measurement

Time or Sequence

Control Chart

The intent of a control chart is to monitor
the variation of a statistically stable
process where activities are repetitive.
Two types of variation are being
observed: 1) common, or random; and,
2) special or unigue events.

Range

EXAMPLE

UPPER LIMIT

//cmu?-\ /
/ N

LOWER LIMIT

X = Single observed value = dots (%)
R = Range fram highest to lowest observed values
Average of observed values(X) = center line

Suggesdtion: Use average of samples rather than single values

Other

TO O ‘S Scatter Plot

E;I Regression Analysis

L,tl Multivariate Analysis

@ Top-Down Estimation
aQxxID

Budgeting

Expert Judgment

Technigues

% Bottom-Up Estimation

<

VAVAN
A VAN

Cost Estimation
Models

Cost Models: Direct estimates of effort. They
typically have a primary cost factor such as
lines of code (LOC) and a number of secondary
adjustment factors.

Constraint Models: These models demonstrate
the relationship over time between two or
more parameters of effort, duration, or
resource.

Function Points Model: Function points (FP)
measure the size in terms of the amount of
functionality in a system. Function points are
computed first by calculating an unadjusted
function point count (UFC) for different
categories.

COCOMOII Model: an enhancement over the
original COCOMO (Constructive Cost Model).
The original COCOMO model is based on
inputs relating to the size of the system and a
number of cost drivers that affect productivity.
COCOMOlIl is useful for a wider collection of
techniques and technologies.

Cost Estimation Models

Cost Models: Direct estimates of effort. They typically have a primary
cost factor such as lines of code (LOC) and a number of secondary
adjustment factors.

Constraint Models: These models demonstrate the relationship over time
between two or more parameters of effort, duration, or resource.

Function Points Model: Function points (FP) measure the size in terms of
the amount of functionality in a system. Function points are computed
first by calculating an unadjusted function point count (UFC) for different
categories.

COCOMOII Model: an enhancement over the original COCOMO
(Constructive Cost Model). The original COCOMO model is based on
inputs relating to the size of the system and a number of cost drivers that
affect productivity. COCOMOII is useful for a wider collection of
techniques and technologies.

Scheduling

 \What tasks will
be done?

 Who will do
them?

* When will they
do them?

.9 1. Developers become the Test Team
- Approach

2. Independent IT Test Team Approach
Test Team

Approaches

3. Non-IT Test Team Approach

// m 4. Combination Test Team Approach

/\/\/\/\ » Release cycle schedules

e System development methodology

e User schedules

Customization
of the Test
PrOceSS e Interfacing with other projects

e Project status reporting

e Interfacing with enterprise-wide databases

* Assuring the same naming conventions/data definitions are used for
testing as for

other projects

Test
Supervision

e Communication skills

e Negotiation and complaint
resolution skills

e Motivation, Mentoring, and
Recognition

Test

Leadership

e Chairing meetings
e Team building

e Quality Management
Organizational Structure

e Code of ethics

Traditional v Quality Management

Traditional Management Philosophy

Quality Management Philosophy

Controls each result

Use the process

Who made the error?

What allowed the error?

Correct the error

Reduce variation and prevent the error

Employees are the problem

Refine the process

Management accountable to their manager

Management accountable to the customer

Competition between organizations

Teamwork

Motivation from fear of failure

Motivation from within (self)

Management of outputs (results —focusing on
detection of defects

Management of process inputs—methods or
sources of variation that focus on preventing
defects

Fire fighting

Continuous process improvement

Accomplishment from meeting quotas, the
monthly or quarterly bottom line

Accomplishment from long-term impact of
improving processes

User
Acceptance

Principles

* Acceptance decisions occur at pre-specified
times when processes, support tools, interim
documentation, segments of the software,
and finally the total system system must
meet predefined criteria for acceptance.
Subsequent changes to the systems may
affect previously accepted elements.

User Acceptance
Accountabllity

Accountability for software acceptance belongs to the customer or user of the software, whose responsibilities are'

e Ensure user involvement in developing system requirements and acceptance criteria

e |dentify interim and final products for acceptance, their acceptance criteria, and schedule
e Plan how and by whom each acceptance activity will be performed

* Plan resources for providing information on which to base acceptance decisions

» Schedule adequate time for buyer staff to receive and examine products and evaluations prior to acceptance
review

e Prepare the Acceptance Plan

* Respond to the analyses of project entities before accepting or rejecting

* Approve the various interim software products against quantified criteria at
interim points

e Perform the final acceptance activities, including formal acceptance testing, at
delivery

e Make an acceptance decision for each product

all

Acceptance testing is designed to determine whether
the software is fit for use. The concept of fit for use is
important in both design and testing.

1. Data The reliability, timeliness, consistency, and
usefulness of the data included in the

automated application.

2. People People should have the skills, training,
aptitude, and desire to properly use and interact

with the automated application.

3. Structure The structure is the proper development
of application systems to optimize technology

and satisfy requirements.

4. Rules The rules are the procedures to follow in
processing the data.

Users Role

Defining acceptance criteria in a testable format

e Providing the use cases that will be used in acceptance testing

e Training user personnel in using the new system

e Providing the necessary resources, primarily user staff personnel, for acceptance testing

e Comparing the actual acceptance testing results with the desired acceptance testing
results (NOTE: This may be performed using testing software)

e Making decisions as to whether additional work is needed prior to placing the system in
operation, whether the software can be placed in operation with additional work to

be done, or whether the system is fully acceptable and can be placed into production as is

User Acceptance
Principles

Acceptance decisions occur at pre-
specified times when processes, support
tools, interim documentation, segments
of the software, and finally the total
system must meet predefined criteria for
acceptance. Subsequent changes to the
software may affect previously

accepted elements.

User Acceptance
Accountabllity

Accountability for system acceptance belongs to the customer or user of the
software, whose responsibilities are:

e Ensure user involvement in developing system requirements and acceptance
criteria

e |dentify interim and final products for acceptance, their acceptance criteria, and
schedule

e Plan how and by whom each acceptance activity will be performed
* Plan resources for providing information on which to base acceptance decisions

* Schedule adequate time for buyer staff to receive and examine products and
evaluations prior to acceptance review

e Prepare the Acceptance Plan

» Respond to the analyses of project entities before accepting or rejecting

e Approve the various interim system products against quantified criteria at
interim points

e Perform the final acceptance activities, including formal acceptance testing, at
delivery

* Make an acceptance decision for each product

Users Role

Defining acceptance criteria in a testable format

* Providing the use cases that will be used in acceptance
testing

e Training user personnel in using the new software
system

e Providing the necessary resources, primarily user staff
personnel, for acceptance testing

e Comparing the actual acceptance testing results with
the desired acceptance testing results (NOTE: This may
be performed using testing system)

* Making decisions as to whether additional work is
needed prior to placing the software in operation,
whether the system can be placed in operation with
additional work to be done, or whether the software is
fully acceptable and can be placed into production as is

Acceptance Test Planning

e Acceptance Criteria
e Acceptance Test Plan
e Use Case Test Data

Example of Acceptance
Criteria

Hardware/Software Project | The name of the project being acceptance-tested. This is the name the
user or customer calls the project.

Number A sequential number identifying acceptance criteria.

Acceptance Requirement A user requirement that will be used to determine whether the corrected
hardware/software is acceptable.

Critical / Non -Ciritical Indicate whether the acceptance requirement is critical, meaning that it
must be met, or non-critical, meaning that it is desirable but not essential.

Test Result Indicates after acceptance testing whether the requirement is acceptable
or not acceptable, meaning that the project is rejected because it does not
meet the requirement.

Comments Clarify the criticality of the requirement; or indicate the meaning of the test
result rejection. For example: The software cannot be run; or management
will make a judgment after acceptance testing as to whether the project
can be run.

Table from CBK

NAEn
Configuration
Management

System Configuration Management
(CM) is a key component of the
infrastructure for any organization.
The ability to maintain control over
the changes made to all project

artifacts is critical to the success of a
project. The more complex an
application is, the more important it is
to implement change to both the
application and its supporting artifacts
in a controlled manner.

Artifacts In SCM

e Source code

e Requirements

®eelection at the end -add
Ob.select= 1 .
_ob.select-1 e Analysis models
ntext.scene.objects.actiw -
W "Selected™ + str(modifier 8
#eirror ob.select = 0
bpy . context. selected_ob»

gata.objects[one.name].sel e Test cases and procedures
acthy ™

e Design models

rint(“please select ex

. e Automated test scripts

_ OPERATOR CL

e User documentation, including manuals and online Help
e Hardware and software configuration settings

e Other artifacts as needed

Cleanroom
process feams

#election at the end -add

M ob.select- 1 developing
ler_ob.select-1 and maintaining the system specification.
ntext.scene.objects.activg
‘.lzfﬁiﬁcggieieﬁr?gdiﬁ' - e Development team. Responsible for
bpy - context.selected obs developing and verifying the software. The
fata.objects[one.name].sel software is NOT executed or even compiled
srint(~please select exacthy '™ during this process.
_ OPERATOR CLASSES -~~~ * Certification team. Responsible for
developing
a set of statistical tests to exercise the
software

after development. Reliability growth models
used to determine when reliability is
acceptable.

Component testing

 Component or unit testing is the process of
testing individual components in isolation.

* |tis a defect testing process.

 Components may be:
* Individual functions or methods within an
object;
* Object classes with several attributes and
methods;

* Composite components with

Interface testing

.

\ ey
\ ‘ ‘\\\\
* Objectives are to detect faults due to interface m\ ‘\\\“\ \

erro.rs or inYaIid assumptions. about. interfaces. m&%\\\\\\‘%\\k : < .
 Particularly important for object-oriented Q\\“ \\‘\w N o
development as objects are defined by their ki\n\“\

interfaces.

	Slide 1
	Slide 2: Basics
	Slide 3: Negative Impact Issues
	Slide 4: MIL-STD-810 & MIL-STD-2105D
	Slide 5: MIL-STD-810
	Slide 6: MIL-STD-810
	Slide 7: MIL-STD-810
	Slide 8: MIL-STD-2105D Hazard Assessment Tests for Non-Nuclear Munitions
	Slide 9: MIL-STD-2105D Hazard Assessment Tests for Non-Nuclear Munitions
	Slide 10: MIL-STD-2105D Hazard Assessment Tests for Non-Nuclear Munitions
	Slide 11: MIL-STD-810 & MIL-STD-2105D
	Slide 12: Some Military Testing Standards
	Slide 13: Some Military Testing Standards
	Slide 14: Standards for SE
	Slide 15: ISO-IEC-IEEE 29919-2 Software and systems engineering —Software testing- Test Processes
	Slide 16: ISO-IEC-IEEE 29919-2 Software and systems engineering —Software testing- Test Processes
	Slide 17: ISO-IEC-IEEE 29919-2 Software and systems engineering —Software testing- Test Processes
	Slide 18: ISO-IEC-IEEE 29919-2 Software and systems engineering —Software testing- Test Processes
	Slide 19: ISO-IEC-IEEE 29919-2 Software and systems engineering —Software testing- Test Processes
	Slide 20: System Integrity Levels
	Slide 21: Software Integrity Levels
	Slide 22: Levels/Types of Testing
	Slide 23: Software Product Defects
	Slide 24: Reasons for Software Defects
	Slide 25: Test Planning
	Slide 26: Testing Constraints
	Slide 27: Source of most problems in testing
	Slide 28: Examples
	Slide 29: Functional vs Structural
	Slide 30: Functional Testing Requirements
	Slide 31: Structural Testing Techniques
	Slide 32: General Testing Guidelines
	Slide 33: Regression testing
	Slide 34: Classes of Test Tools
	Slide 35: Basics
	Slide 36: SMART Goals
	Slide 37: Cost Estimation Models
	Slide 38: Test Team Approaches
	Slide 39: Test Planning Vocabulary
	Slide 40: Test Planning Vocabulary
	Slide 41: Test Planning
	Slide 42: Types of Test Cases
	Slide 43: Test Case Objective
	Slide 44: Process for building test cases
	Slide 45: Test Coverage
	Slide 46: Risks Associated with Software Development
	Slide 47: Risks Associated with Systems Testing
	Slide 48: Risk Analysis Process
	Slide 49: Black-box testing
	Slide 50: Boundary value testing
	Slide 51: Functional
	Slide 52: Structural Testing
	Slide 53: Structural Testing
	Slide 54: Scripts
	Slide 55: Items for Scripts
	Slide 56: Scripts
	Slide 57: White-box testing
	Slide 58: Types of structural testing
	Slide 59: Erroneous Testing
	Slide 60: Erroneous Testing
	Slide 61: Erroneous Testing
	Slide 62: Erroneous Testing
	Slide 63: Stress Testing
	Slide 64: Audit Hook
	Slide 65: Automated Code Comparison
	Slide 66: System testing metrics
	Slide 67: Defect Severity
	Slide 68: Defect Classes
	Slide 69: Defect Naming
	Slide 70: Defect Reporting
	Slide 71: Good Metrics
	Slide 72: Test Metric Categories
	Slide 73: Pareto Chart
	Slide 74: Pareto Chart
	Slide 75: Cause and Effect Diagram
	Slide 76: FMEA
	Slide 77: FMECA
	Slide 78: FMECA
	Slide 79: Failure Modes, Effects, and Diagnostic Analysis (FMEDA)
	Slide 80: FMEDA vs FMEA
	Slide 81: Beta-factor model
	Slide 82: Beta-factor model
	Slide 83: RAMS
	Slide 84: CCA
	Slide 85: CCA
	Slide 86: Check Sheet
	Slide 87: Run Chart
	Slide 88: Control Chart
	Slide 89: Other Tools
	Slide 90: Budgeting Techniques
	Slide 91: Cost Estimation Models
	Slide 92: Cost Estimation Models
	Slide 93: Scheduling
	Slide 94: Test Team Approaches
	Slide 95: Customization of the Test Process
	Slide 96: Test Supervision
	Slide 97: Test Leadership
	Slide 98: Traditional v Quality Management
	Slide 99: User Acceptance Principles
	Slide 100: User Acceptance Accountability
	Slide 101: FIT
	Slide 102: Users Role
	Slide 103: User Acceptance Principles
	Slide 104: User Acceptance Accountability
	Slide 105: Users Role
	Slide 106: Acceptance Test Planning
	Slide 107: Example of Acceptance Criteria
	Slide 108: System Configuration Management
	Slide 109: Artifacts in SCM
	Slide 110: Cleanroom process teams
	Slide 111: Component testing
	Slide 112: Interface testing

